|
In theoretical physics, path-ordering is the procedure (or a meta-operator ) that orders a product of operators according to the value of a chosen parameter: : Here ''p'' is a permutation that orders the parameters by value: : : For example: : == Examples == If an operator is not simply expressed as a product, but as a function of another operator, we must first perform a Taylor expansion of this function. This is the case of the Wilson loop, which is defined as a path-ordered exponential to guarantee that the Wilson loop encodes the holonomy of the gauge connection. The parameter ''σ'' that determines the ordering is a parameter describing the contour, and because the contour is closed, the Wilson loop must be defined as a trace in order to be gauge-invariant. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Path-ordering」の詳細全文を読む スポンサード リンク
|