翻訳と辞書 |
Postselection : ウィキペディア英語版 | Postselection In probability theory, to postselect is to condition a probability space upon the occurrence of a given event. In symbols, once we postselect for an event ''E'', the probability of some other event ''F'' changes from Pr() to the conditional probability Pr(). For a discrete probability space, Pr() = Pr()/Pr(), and thus we require that Pr() be strictly positive in order for the postselection to be well-defined. See also PostBQP, a complexity class defined with postselection. Using postselection it seems quantum Turing machines are much more powerful: Scott Aaronson proved〔. Preprint available at ()〕 PostBQP is equal to PP. == References == 〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Postselection」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|