翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Primon : ウィキペディア英語版
Primon gas
In mathematical physics, the primon gas or free Riemann gas is a toy model illustrating in a simple way some correspondences between number theory and ideas in quantum field theory and dynamical systems. It is a quantum field theory of a set of non-interacting particles, the primons; it is called a gas or a ''free model'' because the particles are non-interacting. The idea of the primon gas was independently discovered by Donald Spector〔D. Spector, Supersymmetry and the Möbius Inversion Function, Communications in Mathematical Physics 127 (1990) pp. 239–252.〕 and Bernard Julia.〔Bernard L. Julia, Statistical theory of numbers, in Number Theory and Physics, eds. J. M. Luck, P. Moussa, and M. Waldschmidt, Springer Proceedings in ''Physics'', Vol. 47, Springer-Verlag, Berlin, 1990, pp. 276–293.〕 Later works by Bakas and Bowick〔I. Bakas and M.J. Bowick, Curiosities of Arithmetic Gases, J. Math. Phys. 32 (1991) p. 1881〕 and Spector 〔D. Spector, Duality, Partial Supersymmetry, and Arithmetic Number Theory, J. Math. Phys. 39 (1998) pp. 1919–1927〕 explored the connection of such systems to
string theory.
==The model==
Consider a simple quantum Hamiltonian ''H'' having eigenstates |p\rangle labelled by the prime numbers ''p'', and having energies proportional to log ''p''. That is,
:H|p\rangle = E_p |p\rangle
with
:E_p=E_0 \log p \,
The second-quantized version of this Hamiltonian converts states into particles, the primons. A multi-particle state is given by the numbers k_p of primons in the single-particle states p:
:|n\rangle = |k_2, k_3, k_5, k_7, k_, \ldots, k_p, \ldots\rangle
This corresponds to the factorization of n into primes:
:n = 2^ \cdot 3^ \cdot 5^ \cdot 7^ \cdot 11^ \cdots
The labelling by the integer ''n'' is unique, since every number has a unique factorization into primes.
The energy of such a multi-particle state is clearly
:E(n) = \sum_p k_p E_p = E_0 \cdot \sum_p k_p \log p = E_0 \log n
The statistical mechanics partition function ''Z'' is given by the Riemann zeta function:
:Z(T) := \sum_^\infty \exp \left(\frac\right) = \sum_^\infty \exp \left(\frac\right) = \sum_^\infty \frac = \zeta (s)
with ''s'' = ''E''0/''k''B''T'' where ''k''B is Boltzmann's constant and ''T'' is the absolute temperature. The divergence of the zeta function at ''s'' = 1 corresponds to the divergence of the partition function at a Hagedorn temperature of ''T''H = ''E''0/''k''B.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Primon gas」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.