翻訳と辞書
Words near each other
・ Pseudocolus fusiformis
・ Pseudocolynthaea
・ Pseudocomitatenses
・ Pseudocommando
・ Pseudocomostola
・ Pseudocomotis
・ Pseudocomotis agatharcha
・ Pseudocomotis albolineana
・ Pseudocomotis chingualana
・ Pseudocomotis citroleuca
・ Pseudocomotis nortena
・ Pseudocomotis razowskii
・ Pseudocomotis scardiana
・ Pseudocomotis serendipita
・ Pseudocompact space
Pseudocomplement
・ Pseudoconalia
・ Pseudoconizonia basalis
・ Pseudoconorbis
・ Pseudoconsensus
・ Pseudoconversational transaction
・ Pseudoconvex function
・ Pseudoconvexity
・ Pseudocopaeodes
・ Pseudocopaeodes eunus
・ Pseudocopicucullia
・ Pseudocopivaleria
・ Pseudocoptops seychellarum
・ Pseudocopulation
・ Pseudocoraebus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pseudocomplement : ウィキペディア英語版
Pseudocomplement
In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement. In a lattice ''L'' with bottom element 0, an element ''x'' ∈ ''L'' is said to have a ''pseudocomplement'' if there exists a greatest element ''x''
* ∈ ''L'', disjoint from ''x'', with the property that ''x'' ∧ ''x''
* = 0. More formally, ''x''
* = max. The lattice ''L'' itself is called a pseudocomplemented lattice if every element of ''L'' is pseudocomplemented. Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation
* mapping every element to its pseudocomplement; this structure is sometimes called a ''p''-algebra. However this latter term may have other meanings in other areas of mathematics.
==Properties==
In a ''p''-algebra ''L'', for all ''x'', ''y'' ∈ ''L'':〔〔
* The map ''x'' ↦ ''x''
* is antitone. In particular, 0
* = 1 and 1
* = 0.
* The map ''x'' ↦ ''x''
*
* is a closure.
* ''x''
* = ''x''
*
*
*.
* (''x''∨''y'')
* = ''x''
* ∧ ''y''
*.
* (''x''∧''y'')
*
* = ''x''
*
* ∧ ''y''
*
*.
The set ''S''(''L'') ≝ is called the skeleton of ''L''. ''S''(''L'') is a ∧-subsemilattice of ''L'' and together with ''x'' ∪ ''y'' = (''x''∨''y'')
*
* = (''x''
* ∧ ''y''
*)
* forms a Boolean algebra (the complement in this algebra is
*).〔〔 In general, ''S''(''L'') is not a sublattice of ''L''.〔 In a distributive ''p''-algebra, ''S''(''L'') is the set of complemented elements of L..〔
Every element ''x'' with the property ''x''
* = 0 (or equivalently, ''x''
*
* = 1) is called dense. Every element of the form ''x'' ∨ ''x''
* is dense. ''D''(''L''), the set of all the dense elements in ''L'' is a filter of ''L''.〔〔 A distributive ''p''-algebra is Boolean if and only if ''D''(''L'') = .〔
Pseudocomplemented lattices form a variety.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pseudocomplement」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.