翻訳と辞書
Words near each other
・ Pseudocomotis albolineana
・ Pseudocomotis chingualana
・ Pseudocomotis citroleuca
・ Pseudocomotis nortena
・ Pseudocomotis razowskii
・ Pseudocomotis scardiana
・ Pseudocomotis serendipita
・ Pseudocompact space
・ Pseudocomplement
・ Pseudoconalia
・ Pseudoconizonia basalis
・ Pseudoconorbis
・ Pseudoconsensus
・ Pseudoconversational transaction
・ Pseudoconvex function
Pseudoconvexity
・ Pseudocopaeodes
・ Pseudocopaeodes eunus
・ Pseudocopicucullia
・ Pseudocopivaleria
・ Pseudocoptops seychellarum
・ Pseudocopulation
・ Pseudocoraebus
・ Pseudocordylus
・ Pseudocoremia
・ Pseudocoremia fenerata
・ Pseudocoremia leucelaea
・ Pseudocoremia melinata
・ Pseudocoremia suavis
・ Pseudocoris


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pseudoconvexity : ウィキペディア英語版
Pseudoconvexity

In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the ''n''-dimensional complex space C''n''. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy.
Let
:G\subset
is a relatively compact subset of G for all real numbers x. In other words, a domain is pseudoconvex if G has a continuous plurisubharmonic exhaustion function. Every (geometrically) convex set is pseudoconvex.
When G has a C^2 (twice continuously differentiable) boundary, this notion is the same as Levi pseudoconvexity, which is easier to work with. More specifically, with a C^2 boundary, it can be shown that G has a defining function; i.e., that there exists \rho: \mathbb^n \to \mathbb which is C^2 so that G=\, and \partial G =\. Now, G is pseudoconvex iff for every p \in \partial G and w in the complex tangent space at p, that is,
: \nabla \rho(p) w = \sum_^n \fracw_j =0 , we have
:\sum_^n \frac w_i \bar \geq 0.
If G does not have a C^2 boundary, the following approximation result can come in useful.
Proposition 1 ''If G is pseudoconvex, then there exist bounded, strongly Levi pseudoconvex domains G_k \subset G with C^\infty (smooth) boundary which are relatively compact in G, such that''
:G = \bigcup_^\infty G_k.
This is because once we have a \varphi as in the definition we can actually find a ''C'' exhaustion function.
==The case ''n'' = 1==
In one complex dimension, every open domain is pseudoconvex. The concept of pseudoconvexity is thus more useful in dimensions higher than 1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pseudoconvexity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.