|
In statistical theory, a pseudolikelihood is an approximation to the joint probability distribution of a collection of random variables. The practical use of this is that it can provide an approximation to the likelihood function of a set of observed data which may either provide a computationally simpler problem for estimation, or may provide a way of obtaining explicit estimates of model parameters. The pseudolikelihood approach was introduced by Julian Besag〔Besag, J. (1975) "Statistical Analysis of Non-Lattice Data." ''The Statistician'', 24(3), 179–195〕 in the context of analysing data having spatial dependence. ==Definition== Given a set of random variables and a set of dependencies between these random variables, where implies is conditionally independent of given 's neighbors, the pseudolikelihood of is : Here is a vector of variables, is a vector of values. The expression above means that each variable in the vector has a corresponding value in the vector . The expression is the probability that the vector of variables has values equal to the vector . Because situations can often be described using state variables ranging over a set of possible values, the expression can therefore represent the probability of a certain state among all possible states allowed by the state variables. The pseudo-log-likelihood is a similar measure derived from the above expression. Thus : One use of the pseudolikelihood measure is as an approximation for inference about a Markov or Bayesian network, as the pseudolikelihood of an assignment to may often be computed more efficiently than the likelihood, particularly when the latter may require marginalization over a large number of variables. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pseudolikelihood」の詳細全文を読む スポンサード リンク
|