翻訳と辞書
Words near each other
・ Pseudomonas proteolytica
・ Pseudomonas pseudoalcaligenes
・ Pseudomonas psychrophila
・ Pseudomonas psychrotolerans
・ Pseudomonas putida
・ Pseudomonas rathonis
・ Pseudomonas reptilivora
・ Pseudomonas resiniphila
・ Pseudomonas resinovorans
・ Pseudomonas rhizosphaerae
・ Pseudomonas rhodesiae
・ Pseudomonas rnk leader
・ Pseudomonas rpsL leader
・ Pseudomonas rubescens
・ Pseudometric
Pseudometric space
・ Pseudomiccolamia
・ Pseudomicrodes
・ Pseudomicrodon
・ Pseudomicronia
・ Pseudomigadops
・ Pseudominolia
・ Pseudominolia articulata
・ Pseudominolia biangulosa
・ Pseudominolia climacota
・ Pseudominolia gradata
・ Pseudominolia musiva
・ Pseudominolia nedyma
・ Pseudominolia splendens
・ Pseudominolia tramieri


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pseudometric space : ウィキペディア英語版
Pseudometric space
In mathematics, a pseudometric or semi-metric space〔Dmitri Burago, Yu D Burago, Sergei Ivanov, A Course in Metric Geometry, American Mathematical Society, 2001, ISBN 0-8218-2129-6.〕 is a generalized metric space in which the distance between two distinct points can be zero. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis.
When a topology is generated using a family of pseudometrics, the space is called a gauge space.
==Definition==
A pseudometric space (X,d) is a set X together with a non-negative real-valued function d\colon X \times X \longrightarrow \mathbb_ (called a pseudometric) such that, for every x,y,z \in X,
#d(x,y) \geq 0.
#d(x,y) = d(y,x) (''symmetry'')
#d(x,z) \leq d(x,y) + d(y,z) (''subadditivity''/''triangle inequality'')

Unlike a metric space, points in a pseudometric space need not be distinguishable; that is, one may have d(x,y)=0 for distinct values x\ne y.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pseudometric space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.