翻訳と辞書
Words near each other
・ Quasiregular element
・ Quasiregular map
・ Quasiregular polyhedron
・ Quasiregular representation
・ Quasireversibility
・ Quasi-birth–death process
・ Quasi-category
・ Quasi-commutative property
・ Quasi-compact morphism
・ Quasi-constitutionality
・ Quasi-continuous function
・ Quasi-contract
・ Quasi-criminal
・ Quasi-crystals (supramolecular)
・ Quasi-delict
Quasi-derivative
・ Quasi-elemental
・ Quasi-empirical method
・ Quasi-empiricism in mathematics
・ Quasi-experiment
・ Quasi-fibration
・ Quasi-finite field
・ Quasi-finite morphism
・ Quasi-foreign corporation
・ Quasi-Frobenius Lie algebra
・ Quasi-Frobenius ring
・ Quasi-Fuchsian group
・ Quasi-geostrophic equations
・ Quasi-harmonic approximation
・ Quasi-Hilda comet


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-derivative : ウィキペディア英語版
Quasi-derivative
In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gâteaux derivative, though weaker than the Fréchet derivative.
Let ''f'' : ''A'' → ''F'' be a continuous function from an open set ''A'' in a Banach space ''E'' to another Banach space ''F''. Then the quasi-derivative of ''f'' at ''x''0 ∈ ''A'' is a linear transformation ''u'' : ''E'' → ''F'' with the following property: for every continuous function ''g'' : () → ''A'' with ''g''(0)=''x''0 such that ''g''′(0) ∈ ''E'' exists,
:\lim_\frac = u(g'(0)).
If such a linear map ''u'' exists, then ''f'' is said to be ''quasi-differentiable'' at ''x''0.
Continuity of ''u'' need not be assumed, but it follows instead from the definition of the quasi-derivative. If ''f'' is Fréchet differentiable at ''x''0, then by the chain rule, ''f'' is also quasi-differentiable and its quasi-derivative is equal to its Fréchet derivative at ''x''0. The converse is true provided ''E'' is finite-dimensional. Finally, if ''f'' is quasi-differentiable, then it is Gâteaux differentiable and its Gâteaux derivative is equal to its quasi-derivative.
==References==

*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.