翻訳と辞書 |
Quasi-isomorphism : ウィキペディア英語版 | Quasi-isomorphism In homological algebra, a branch of mathematics, a quasi-isomorphism is a morphism ''A'' → ''B'' of chain complexes (respectively, cochain complexes) such that the induced morphisms : of homology groups (respectively, of cohomology groups) are isomorphisms for all ''n''. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. ==References==
*Gelfand, Manin. ''Methods of Homological Algebra'', 2nd ed. Springer, 2000.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Quasi-isomorphism」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|