翻訳と辞書 |
Quasicircle In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems. ==Definitions== A quasicircle is defined as the image of a circle under a quasiconformal mapping of the extended complex plane. It is called a ''K''-quasicircle if the quasiconformal mapping has dilatation ''K''. The definition of quasicircle generalizes the characterization of a Jordan curve as the image of a circle under a homeomorphism of the plane. In particular a quasicircle is a Jordan curve. The interior of a quasicircle is called a ''quasidisk''. As shown in , where the older term "quasiconformal curve" is used, if a Jordan curve is the image of a circle under a quasiconformal map in a neighbourhood of the curve, then it is also the image of a circle under a quasiconformal mapping of the extended plane and thus a quasicircle. The same is true for "quasiconformal arcs" which can be defined as quasiconformal images of a circular arc either in an open set or equivalently in the extended plane.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Quasicircle」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|