翻訳と辞書 |
Rademacher's theorem : ウィキペディア英語版 | Rademacher's theorem In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If is an open subset of and is Lipschitz continuous, then is differentiable almost everywhere in ; that is, the points in at which is ''not'' differentiable form a set of Lebesgue measure zero. ==Generalizations==
There is a version of Rademacher's theorem that holds for Lipschitz functions from a Euclidean space into an arbitrary metric space in terms of metric differentials instead of the usual derivative.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Rademacher's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|