翻訳と辞書
Words near each other
・ Radiarctia screabile
・ Radiarctia sinefascia
・ Radiata
・ Radiata (disambiguation)
・ Radiata Stories
・ Radiate
・ Radiate (app)
・ Radiate (coin)
・ Radiate (Enter Shikari song)
・ Radiate (Tricia album)
・ Radiate carpal ligament
・ Radiate ligament of head of rib
・ Radiate sternocostal ligaments
・ Radiated ratsnake
・ Radiated tortoise
Radiation
・ Radiation (album)
・ Radiation (BBC Recordings 84–86)
・ Radiation (disambiguation)
・ Radiation and Environmental Biophysics
・ Radiation and health
・ Radiation and Nuclear Safety Authority
・ Radiation and Public Health Project
・ Radiation angle
・ Radiation assessment detector
・ Radiation burn
・ Radiation chemistry
・ Radiation City
・ Radiation constant
・ Radiation Control for Health and Safety Act of 1968


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Radiation : ウィキペディア英語版
Radiation

(詳細はphysics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:
* electro-magnetic radiation (also known as "continuum radiation") such as radio waves, visible light, x-rays, and γ.
* particle radiation such as α, β, and neutron radiation (discrete rest energy per particle)
* acoustic radiation such as ultrasound, sound, and seismic waves. (dependent on intervening mass for transmission)
Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 eV, which is enough to ionize atoms and molecules, and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms. A common source of ionizing radiation is radioactive materials that emit α, β, or γ radiation, consisting of helium nuclei, electrons or positrons, and photons, respectively. Other sources include X-rays from medical radiography examinations and muons, mesons, positrons, neutrons and other particles that constitute the secondary cosmic rays that are produced after primary cosmic rays interact with Earth's atmosphere.
Gamma rays, X-rays and the higher energy range of ultraviolet light constitute the ionizing part of the electromagnetic spectrum. The lower-energy, longer-wavelength part of the spectrum including visible light, infrared light, microwaves, and radio waves is non-ionizing; its main effect when interacting with tissue is heating. This type of radiation only damages cells if the intensity is high enough to cause excessive heating. Ultraviolet radiation has some features of both ionizing and non-ionizing radiation. While the part of the ultraviolet spectrum that penetrates the Earth's atmosphere is non-ionizing, this radiation does far more damage to many molecules in biological systems than can be accounted for by heating effects, sunburn being a well-known example. These properties derive from ultraviolet's power to alter chemical bonds, even without having quite enough energy to ionize atoms.
The word radiation arises from the phenomenon of waves ''radiating'' (i.e., traveling outward in all directions) from a source. This aspect leads to a system of measurements and physical units that are applicable to all types of radiation. Because such radiation expands as it passes through space, and as its energy is conserved (in vacuum), the intensity of all types of radiation from a point source follows an inverse-square law in relation to the distance from its source. This law does not apply close to an extended source of radiation or for focused beams.
==Ionizing radiation==

Radiation with sufficiently high energy can ionize atoms; that is to say it can knock electrons off atoms and create ions. Ionization occurs when an electron is stripped (or "knocked out") from an electron shell of the atom, which leaves the atom with a net positive charge. Because living cells and, more importantly, the DNA in those cells can be damaged by this ionization, exposure to ionizing radiation is considered to increase the risk of cancer. Thus "ionizing radiation" is somewhat artificially separated from particle radiation and electromagnetic radiation, simply due to its great potential for biological damage. While an individual cell is made of trillions of atoms, only a small fraction of those will be ionized at low to moderate radiation powers. The probability of ionizing radiation causing cancer is dependent upon the absorbed dose of the radiation, and is a function of the damaging tendency of the type of radiation (equivalent dose) and the sensitivity of the irradiated organism or the tissue's (effective dose).
If the source of the ionizing radiation is a radioactive material or a nuclear process such as fission or fusion, there is particle radiation to consider. Particle radiation is subatomic particles accelerated to relativistic speeds by nuclear reactions. Because of their momenta they are quite capable of knocking out electrons and ionizing materials, but since most have an electrical charge, they don't have the penetrating power of ionizing radiation. The exception is neutron particles; see below. There are several different kinds of these particles, but the majority are alpha particles, beta particles, neutrons, and protons. Roughly speaking, photons and particles with energies above about 10 electron volts (eV) are ionizing (some authorities use 33 eV, the ionization energy for water). Particle radiation from radioactive material or cosmic rays almost invariably carries enough energy to be ionizing.
Much ionizing radiation originates from radioactive materials and space (cosmic rays), and as such is naturally present in the environment, since most rock and soil has small concentrations of radioactive materials. The radiation is invisible and not directly detectable by human senses; as a result, instruments such as Geiger counters are usually required to detect its presence. In some cases, it may lead to secondary emission of visible light upon its interaction with matter, as in the case of Cherenkov radiation and radio-luminescence.
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131.〔 However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based on data from the atomic bombing in Japan and from reactor accident follow-up, such as with the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."〔(【引用サイトリンク】url=http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Radiation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.