|
The ribosome () is a large and complex molecular machine, found within all living cells, that serves as the site of biological protein synthesis (translation). Ribosomes link amino acids together in the order specified by messenger RNA (mRNA) molecules. Ribosomes consist of two major components: the small ribosomal subunit, which reads the RNA, and the large subunit, which joins amino acids to form a polypeptide chain. Each subunit is composed of one or more ribosomal RNA (rRNA) molecules and a variety of proteins. The ribosomes and associated molecules are also known as the ''translational apparatus''. The sequence of DNA encoding for a protein may be copied many times into RNA chains of a similar sequence. Ribosomes can bind to an RNA chain and use it as a template for determining the correct sequence of amino acids in a particular protein. Amino acids are selected, collected and carried to the ribosome by transfer RNA (tRNA molecules), which enter one part of the ribosome and bind to the messenger RNA chain. The attached amino acids are then linked together by another part of the ribosome. Once the protein is produced, it can then fold to produce a specific functional three-dimensional structure. It should be noted that during synthesis some proteins already start folding into their correct form. A ribosome is made from complexes of RNAs and proteins and is therefore a ribonucleoprotein. Each ribosome is divided into two subunits: 1. a smaller subunit which binds to a larger subunit and the mRNA pattern, and 2. a larger subunit which binds to the tRNA, the amino acids, and the smaller subunit. When a ribosome finishes reading an mRNA molecule, these two subunits split apart. Ribosomes are ribozymes, because the catalytic peptidyl transferase activity that links amino acids together is performed by the ribosomal RNA. Ribosomes are often embedded in the intracellular membranes that make up the rough endoplasmic reticulum. Ribosomes from bacteria, archaea and eukaryotes (the three domains of life on Earth) differ in their size, sequence, structure, and the ratio of protein to RNA. The differences in structure allow some antibiotics to kill bacteria by inhibiting their ribosomes, while leaving human ribosomes unaffected. In bacteria and archaea, more than one ribosome may move along a single mRNA chain at one time, each "reading" its sequence and producing a corresponding protein molecule. The ribosomes in the mitochondria of eukaryotic cells functionally resemble many features of those in bacteria, reflecting the likely evolutionary origin of mitochondria.〔(【引用サイトリンク】title=Ribosomes )〕 ==Discovery== Ribosomes were first observed in the mid-1950s by Romanian cell biologist George Emil Palade using an electron microscope as dense particles or granules for which, in 1974, he would win a Nobel Prize. The term "ribosome" was proposed by scientist Richard B. Roberts in 1958: Albert Claude, Christian de Duve, and George Emil Palade were jointly awarded the Nobel Prize in Physiology or Medicine, in 1974, for the discovery of the ribosomes. The Nobel Prize in Chemistry 2009 was awarded to Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath for determining the detailed structure and mechanism of the ribosome.〔£€¥20 (2009 Nobel Prize in Chemistry ), Nobel Foundation.〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ribosome」の詳細全文を読む スポンサード リンク
|