翻訳と辞書 |
SUBCLU
SUBCLU is an algorithm for clustering high-dimensional data by Karin Kailing, Hans-Peter Kriegel and Peer Kröger.〔Karin Kailing, Hans-Peter Kriegel and Peer Kröger. ''Density-Connected Subspace Clustering for High-Dimensional Data''. In: ''Proc. SIAM Int. Conf. on Data Mining (SDM'04)'', pp. 246-257, 2004.〕 It is a subspace clustering algorithm that builds on the density-based clustering algorithm DBSCAN. SUBCLU can find clusters in axis-parallel subspaces, and uses a bottom-up, greedy strategy to remain efficient. ==Approach== SUBCLU uses a monotonicity criteria: if a cluster is found in a subspace , then each subspace also contains a cluster. However, a cluster in subspace is not necessarily a cluster in , since clusters are required to be maximal, and more objects might be contained in the cluster in that contains . However, a density-connected set in a subspace is also a density-connected set in . This ''downward-closure property'' is utilized by SUBCLU in a way similar to the Apriori algorithm: first, all 1-dimensional subspaces are clustered. All clusters in a higher-dimensional subspace will be subsets of the clusters detected in this first clustering. SUBCLU hence recursively produces -dimensional candidate subspaces by combining -dimensional subspaces with clusters sharing attributes. After pruning irrelevant candidates, DBSCAN is applied to the candidate subspace to find out if it still contains clusters. If it does, the candidate subspace is used for the next combination of subspaces. In order to improve the runtime of DBSCAN, only the points known to belong to clusters in one -dimensional subspace (which is chosen to contain as little clusters as possible) are considered. Due to the downward-closure property, other point cannot be part of a -dimensional cluster anyway.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「SUBCLU」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|