翻訳と辞書
Words near each other
・ Schunkeln
・ Schunter
・ Schupfart
・ Schupfnudel
・ Schupp
・ Schuppan
・ Schuppan 962CR
・ Schuppanzigh Quartet
・ Schuppen
・ Schur
・ Schur algebra
・ Schur algorithm
・ Schur class
・ Schur complement
・ Schur complement method
Schur decomposition
・ Schur function
・ Schur functor
・ Schur multiplier
・ Schur orthogonality relations
・ Schur polynomial
・ Schur product theorem
・ Schur test
・ Schur's inequality
・ Schur's lemma
・ Schur's lemma (disambiguation)
・ Schur's lemma (from Riemannian geometry)
・ Schur's property
・ Schur's theorem
・ Schur-convex function


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schur decomposition : ウィキペディア英語版
Schur decomposition
In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition.
== Statement ==
The Schur decomposition reads as follows: if ''A'' is a ''n'' × ''n'' square matrix with complex entries, then ''A'' can be expressed as〔(Section 2.3 and further at (p. 79 ))〕〔(Section 7.7 at (p. 313 ))〕
: A = Q U Q^
where ''Q'' is a unitary matrix (so that its inverse ''Q''−1 is also the conjugate transpose ''Q''
* of ''Q''), and ''U'' is an upper triangular matrix, which is called a Schur form of ''A''. Since ''U'' is similar to ''A'', it has the same multiset of eigenvalues, and since it is triangular, those eigenvalues are the diagonal entries of ''U''.
The Schur decomposition implies that there exists a nested sequence of ''A''-invariant subspaces = ''V''0 ⊂ ''V''1 ⊂ ... ⊂ ''Vn'' = C''n'', and that there exists an ordered orthonormal basis (for the standard Hermitian form of C''n'') such that the first ''i'' basis vectors span ''V''''i'' for each ''i'' occurring in the nested sequence. Phrased somewhat differently, the first part says that a linear operator ''J'' on a complex finite-dimensional vector space stabilizes a complete flag (''V''1,...,''Vn'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schur decomposition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.