翻訳と辞書
Words near each other
・ Sclerolobium densiflorum
・ Sclerolobium denudatum
・ Sclerolobium hypoleucum
・ Sclerolobium pilgerianum
・ Sclerolobium striatum
・ Sclerometer
・ Scleromitrula
・ Scleromochlus
・ Scleromyositis
・ Scleromystax
・ Scleromystax prionotos
・ Scleromystax salmacis
・ Scleronema
・ Scleronema (fish)
・ Scleronema (plant)
Scleronomous
・ Scleronotus
・ Scleronotus angulatus
・ Scleronotus anthribiformis
・ Scleronotus egensis
・ Scleronotus flavosparsus
・ Scleronotus hirsutus
・ Scleronotus monticellus
・ Scleronotus scabrosus
・ Scleronotus stigosus
・ Scleronotus stupidus
・ Scleronotus tricarinatus
・ Scleronychophora
・ Scleropages
・ Scleropezicula


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Scleronomous : ウィキペディア英語版
Scleronomous
A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable. Such constraints are called scleronomic constraints.
==Application==
:Main article:Generalized velocity
In 3-D space, a particle with mass m\,\!, velocity \mathbf\,\! has kinetic energy
:T =\fracm v^2 \,\!.
Velocity is the derivative of position with respect to time. Use chain rule for several variables:
:\mathbf=\frac=\sum_i\ \frac\dot_i+\frac\,\!.
Therefore,
:T =\fracm \left(\sum_i\ \frac\dot_i+\frac\right)^2\,\!.
Rearranging the terms carefully,
:T =T_0+T_1+T_2\,\!:
:T_0=\fracm\left(\frac\right)^2\,\!,
:T_1=\sum_i\ m\frac\cdot \frac\dot_i\,\!,
:T_2=\sum_\ \fracm\frac\cdot \frac\dot_i\dot_j\,\!,
where T_0\,\!, T_1\,\!, T_2\,\! are respectively homogeneous functions of degree 0, 1, and 2 in generalized velocities. If this system is scleronomous, then the position does not depend explicitly with time:
:\frac=0\,\!.
Therefore, only term T_2\,\! does not vanish:
:T = T_2\,\!.
Kinetic energy is a homogeneous function of degree 2 in generalized velocities .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Scleronomous」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.