翻訳と辞書
Words near each other
・ Semifonte
・ Semifreddi's Bakery
・ Semifreddo
・ Semifusa
・ Semigallia
・ Semigallian
・ Semigallian language
・ Semigallians
・ Semigraphics
・ Semigroup
・ Semigroup action
・ Semigroup Forum
・ Semigroup with involution
・ Semigroup with three elements
・ Semigroup with two elements
Semigroupoid
・ Semigyalecta
・ Semih
・ Semih Aydilek
・ Semih Erden
・ Semih Kaplanoğlu
・ Semih Kaya
・ Semih Sancar
・ Semih Saygıner
・ Semih Tezcan
・ Semih Tufan Gülaltay
・ Semih Yağcı
・ Semih Özmert
・ Semih Şentürk
・ Semiha


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Semigroupoid : ウィキペディア英語版
Semigroupoid
In mathematics, a semigroupoid (also called semicategory or precategory) is a partial algebra that satisfies the axioms for a small〔, Appendix B〕〔See e.g. , which requires the objects of a semigroupoid to form a set.〕 category, except possibly for the requirement that there be an identity at each object. Semigroupoids generalise semigroups in the same way that small categories generalise monoids and groupoids generalise groups. Semigroupoids have applications in the structural theory of semigroups.
Formally, a ''semigroupoid'' consists of:
* a set of things called ''objects''.
* for every two objects ''A'' and ''B'' a set Mor(''A'',''B'') of things called ''morphisms from A to B''. If ''f'' is in Mor(''A'',''B''), we write ''f'' : ''A'' → ''B''.
* for every three objects ''A'', ''B'' and ''C'' a binary operation Mor(''A'',''B'') × Mor(''B'',''C'') → Mor(''A'',''C'') called ''composition of morphisms''. The composition of ''f'' : ''A'' → ''B'' and ''g'' : ''B'' → ''C'' is written as ''g'' ∘ ''f'' or ''gf''. (Some authors write it as ''fg''.)
such that the following axiom holds:
* (associativity) if ''f'' : ''A'' → ''B'', ''g'' : ''B'' → ''C'' and ''h'' : ''C'' → ''D'' then ''h'' ∘ (''g'' ∘ ''f'') = (''h'' ∘ ''g'') ∘ ''f''.
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Semigroupoid」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.