翻訳と辞書
Words near each other
・ Sigurd Lohde
・ Sigurd Lorentzen
・ Sigurd Lucassen
・ Sigurd Lund Hamran
・ Sigurd Lunde
・ Sigrún Stefánsdóttir
・ SIGSALY
・ SIGSAM
・ Sigsbee
・ Sigsbee (skipjack)
・ Sigsbee Deep
・ Sigsbee Escarpment
・ Sigsbee Park
・ Sigsig Canton
・ SIGSOFT
SigSpec
・ Sigsworth
・ Sigtið
・ SIGTRAN
・ Sigtryg Eysteinsson
・ Sigtrygg
・ Sigtrygg Gnupasson
・ Sigtrygg of Nerike
・ Sigtrygg Runestones
・ Sigtrygg Silkbeard
・ Sigtryggur Baldursson
・ Sigtryggur Jonasson
・ Sigtuna
・ Sigtuna box
・ Sigtuna Cricket Club


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

SigSpec : ウィキペディア英語版
SigSpec

SigSpec is an acronym of "SIGnificance SPECtrum" and addresses a statistical technique to provide the reliability of periodicities in a measured (noisy and not necessarily equidistant) time series. It relies on the amplitude spectrum obtained by the Discrete Fourier transform (DFT) and assigns a quantity called the spectral significance (frequently abbreviated by “sig”) to each amplitude. This quantity is a logarithmic measure of the probability that the given amplitude level is due to white noise, in the sense of a type I error. It represents the answer to the question, “What would be the chance to obtain an amplitude like the measured one or higher, if the analysed time series were random?”
SigSpec may be considered a formal extension to the Lomb-Scargle periodogram, appropriately incorporating a time series to be averaged to zero before applying the DFT, which is done in many practical applications. When a zero-mean corrected dataset has to be statistically compared to a random sample, the sample mean (rather than the population mean only) has to be zero.
== Probability density function (pdf) of white noise in Fourier space ==

Considering a time series to be represented by a set of K pairs (t_k,x_k), the amplitude pdf of white noise in Fourier space, depending on frequency and phase angle may be described in terms of three parameters, \alpha_0, \beta_0, \theta_0, defining the “sampling profile”, according to
:\tan 2\theta_0 = \frac\sin 2\omega t_k - 2\left(\sum_^\cos\omega t_k\right)\left(\sum_^\sin\omega t_k\right)}\cos 2\omega t_k - \big(\sum_^\cos\omega t_k\big)^2 + \big(\sum_^\sin\omega t_k\big)^2},
:\alpha_0 = \sqrt\left( K\sum_^\cos ^2\left(\omega t_k-\theta_0\right) -\left(t_k-\theta_0\right)\right )^2\right)},
:\beta_0 = \sqrt\left( K\sum_^\sin ^2\left(\omega t_k-\theta_0\right) -\left(t_k-\theta_0\right)\right )^2\right)}.
In terms of the phase angle in Fourier space, \theta, with
:\tan\theta = \frac\sin\omega t_k}\cos\omega t_k},
the probability density of amplitudes is given by
:\phi (A) = \frac\exp\left(-\frac\cdot\operatorname\right),
where the sock function is defined by
:\operatorname(\omega ,\theta) = \left(variance of the dependent variable x_k.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「SigSpec」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.