翻訳と辞書
Words near each other
・ Sigmund Ringeck
・ Sigmund Rolat
・ Sigmund Romberg
・ Sigma viruses
・ Sigma war games
・ Sigma Xi
・ Sigma Zeta
・ Sigma, Capiz
・ Sigma, Lee County, Virginia
・ Sigma, Virginia
・ Sigma-1 receptor
・ Sigma-2 receptor
・ Sigma-Aldrich
・ Sigma-algebra
・ Sigma-class corvette
Sigma-ideal
・ Sigma-martingale
・ Sigma-pi and equivalent-orbital models
・ Sigma-ring
・ Sigma-t
・ Sigma-Tau
・ Sigma1 Cancri
・ Sigma1 Gruis
・ Sigma1 Ursae Majoris
・ Sigma2 Cancri
・ Sigma2 Gruis
・ Sigma2 Ursae Majoris
・ Sigma3
・ Sigma3 Cancri
・ Sigmala


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sigma-ideal : ウィキペディア英語版
Sigma-ideal
In mathematics, particularly measure theory, a ''σ''-ideal of a sigma-algebra (''σ'', read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is perhaps in probability theory.
Let (''X'',Σ) be a measurable space (meaning Σ is a ''σ''-algebra of subsets of ''X''). A subset ''N'' of Σ is a ''σ''-ideal if the following properties are satisfied:
(i) Ø ∈ ''N'';
(ii) When ''A'' ∈ ''N'' and ''B'' ∈ Σ , ''B'' ⊆ ''A'' ⇒ ''B'' ∈ ''N'';
(iii) \left\_} A_n\in N.
Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of ''σ''-ideal is dual to that of a countably complete (''σ''-) filter.
If a measure ''μ'' is given on (''X'',Σ), the set of ''μ''-negligible sets (''S'' ∈ Σ such that ''μ''(''S'') = 0) is a ''σ''-ideal.
The notion can be generalized to preorders (''P'',≤,0) with a bottom element 0 as follows: ''I'' is a ''σ''-ideal of ''P'' just when
(i') 0 ∈ ''I'',
(ii') ''x'' ≤ ''y'' & ''y'' ∈ ''I'' ⇒ ''x'' ∈ ''I'', and
(iii') given a family ''x''''n'' ∈ ''I'' (''n'' ∈ N), there is ''y'' ∈ ''I'' such that ''x''''n'' ≤ ''y'' for each ''n''
Thus ''I'' contains the bottom element, is downward closed, and is closed under countable suprema (which must exist). It is natural in this context to ask that ''P'' itself have countable suprema.
==References==

*Bauer, Heinz (2001): ''Measure and Integration Theory''. Walter de Gruyter GmbH & Co. KG, 10785 Berlin, Germany.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sigma-ideal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.