翻訳と辞書
Words near each other
・ Ski jumping at the 1988 Winter Olympics – Large hill individual
・ Ski jumping at the 1988 Winter Olympics – Large hill team
・ Ski jumping at the 1988 Winter Olympics – Normal hill individual
・ Ski jumping at the 1990 Asian Winter Games
・ Skew heap
・ Skew It on the Bar-B
・ Skew lattice
・ Skew lines
・ Skew normal distribution
・ Skew partition
・ Skew Peak
・ Skew polygon
・ Skew Siskin
・ Skew Siskin (album)
・ Skew-Hamiltonian matrix
Skew-Hermitian
・ Skew-Hermitian matrix
・ Skew-symmetric graph
・ Skew-symmetric matrix
・ Skew-T log-P diagram
・ Skewarkey Primitive Baptist Church
・ Skewb
・ Skewb Diamond
・ Skewb Ultimate
・ Skewbald
・ Skewbald Horde
・ Skewbald/Grand Union (EP)
・ Skewball
・ Skewed generalized t distribution
・ Skewed Visions


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Skew-Hermitian : ウィキペディア英語版
Skew-Hermitian
An n by n complex or real matrix A = (a_)_ is said to be anti-Hermitian, skew-Hermitian, or said to represent a skew-adjoint operator, or to be a skew-adjoint matrix, on the complex or real n dimensional space K^n, if its adjoint is the negative of itself: :A^
*=-A.
Note that the adjoint of an operator depends on the scalar product considered on the n dimensional complex or real space K^n. If (\cdot|\cdot) denotes the scalar product on K^n, then saying A is skew-adjoint means that for all u,v \in K^n one has
(Au|v) = - (u|Av) \, .
In the particular case of the canonical scalar products on K^n, the matrix of a skew-adjoint operator satisfies a_ = - _ for all 1 \leq i,j \leq n.
Imaginary numbers can be thought of as skew-adjoint (since they are like 1-by-1 matrices), whereas real numbers correspond to self-adjoint operators.
==See also==

* Skew-Hermitian matrix

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Skew-Hermitian」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.