|
In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave propagation can be used to communicate beyond the horizon, at intercontinental distances. It is mostly used in the shortwave frequency bands. As a result of skywave propagation, a signal from a distant AM broadcasting station, a shortwave station, or—during sporadic E propagation conditions (principally during the summer months in both hemispheres)—a low frequency television station can sometimes be received as clearly as local stations. Most long-distance shortwave (high frequency) radio communication—between 3 and 30 MHz—is a result of skywave propagation. Since the early 1920s amateur radio operators (or "hams"), limited to lower transmitter power than broadcast stations, have taken advantage of skywave for long distance (or "DX") communication. Skywave propagation is distinct from: * groundwave propagation, where radio waves travel near Earth's surface without being reflected or refracted by the atmosphere—the dominant propagation mode at lower frequencies, *line-of-sight propagation, in which radio waves travel in a straight line, the dominant mode at higher frequencies. == Explanation == The ionosphere is a region of the upper atmosphere, from about 80 km to 1000 km in altitude, where neutral air is ionized by solar photons and cosmic rays. When high frequency signals enter the ionosphere obliquely, they are back-scattered from the ionized layer as scatter waves.〔Sony Corporation. (1998). ''Wave Handbook''. p.14. .〕 If the midlayer ionization is strong enough compared to the signal frequency, a scatter wave can exit the bottom of the layer earthwards as if reflected from a mirror. Earth's surface (ground or water) then diffusely reflects the incoming wave back towards the ionosphere. Consequently, like a rock "skipping" across water, the signal may effectively "bounce" or "skip" between the earth and ionosphere two or more times (multihop propagation). Since at shallow incidence losses remain quite small, signals of only a few watts can sometimes be received many thousands of miles away as a result. This is what enables shortwave broadcasts to travel all over the world. If the ionization is not great enough, the scatter wave is initially deflected downwards, and subsequently upwards (above the layer peak) such that it exits the top of the layer slightly displaced. Sky wave propagation occurs in the waveguide formed by the ground and ionosphere, each serving as reflectors. With a single "hop," path distances up to 3500 km may be reached. Transatlantic connections are mostly obtained with two or three hops.〔K.Rawer:''Wave Propagation in the Ionosphere''. Kluwer Acad.Publ., Dordrecht 1993. ISBN 0-7923-0775-5.〕 The layer of ionospheric plasma with equal ionization (the reflective surface) is not fixed, but undulates like the surface of the ocean. Varying reflection efficiency from this changing surface can cause the reflected signal strength to change, causing "''fading''" in shortwave broadcasts. Depending on the transmitting antenna, signals below approximately 10 MHz during the day and 5 MHz at night, entering the ionosphere at a steep angle (near-vertical incidence) may be back-scattered down to Earth within a short range. Alternatively, signals beamed close to the horizon enter the ionosphere at a shallow angle and return to Earth over medium to long distances. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Skywave」の詳細全文を読む スポンサード リンク
|