翻訳と辞書
Words near each other
・ Statistical Solutions
・ Statistical static timing analysis
・ Statistical syllogism
・ Statistical theory
・ Statistical thinking
・ Statistical time division multiplexing
・ Statistical unit
・ Statistical weight
・ Statistical Yearbook of Switzerland
・ Statistical, Economic and Social Research and Training Centre for Islamic Countries
・ Statistically close
・ Statistically improbable phrase
・ Statistician
・ Statisticians in the Pharmaceutical Industry
・ Statisticians' and engineers' cross-reference of statistical terms
Statistics
・ Statistics (disambiguation)
・ Statistics (song)
・ Statistics Act
・ Statistics and Computing
・ Statistics and Its Interface
・ Statistics and Registration Service Act 2007
・ Statistics Belgium
・ Statistics Canada
・ Statistics Commission
・ Statistics Denmark
・ Statistics department (Anguilla)
・ Statistics Division of the Government of Pakistan
・ Statistics education
・ Statistics Estonia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Statistics : ウィキペディア英語版
Statistics

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data.〔Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. ISBN 0-19-920613-9〕 In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as "all persons living in a country" or "every atom composing a crystal". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.〔
When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.
Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a ''distribution'' (sample or population): ''central tendency'' (or ''location'') seeks to characterize the distribution's central or typical value, while ''dispersion'' (or ''variability'') characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.
A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a "false positive") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a "false negative"). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.
Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.
Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
== Scope ==

Statistics is a mathematical body of science that pertains to the collection, analysis, interpretation or explanation, and presentation of data,〔Moses, Lincoln E. (1986) ''Think and Explain with Statistics'', Addison-Wesley, ISBN 978-0-201-15619-5 . pp. 1–3〕 or as a branch of mathematics.〔Hays, William Lee, (1973) ''Statistics for the Social Sciences'', Holt, Rinehart and Winston, p.xii, ISBN 978-0-03-077945-9〕 Some consider statistics to be a distinct mathematical science rather than a branch of mathematics.〔


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Statistics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.