翻訳と辞書 |
Superstripes : ウィキペディア英語版 | Superstripes Superstripes is a generic name for a phase with spatial broken symmetry that favors the onset of superconducting or superfluid quantum order. This scenario emerged in the 1990s when no-homogeneous metallic heterostructures at the atomic limit with a broken spatial symmetry have been found to favor superconductivity. Before a broken spatial symmetry was expected to compete and suppress the superconducting order. The driving mechanism for the amplification of the superconductivity critical temperature in superstripes matter has been proposed to be the shape resonance in the energy gap parameters ∆n that is a type of Fano resonance for coexisting condensates. The superstripes show multigap superconductivity near a 2.5 Lifshitz transition where the renormalization of chemical potential at the metal-to-superconductor transition is not negligeable and the self-consistent solution of the gaps equation is required. The superstripes lattice scenario is made of puddles of multigap superstripes matter forming a superconducting network where different gaps are not only different in different portions of the k-space but also in different portions of the real space with a complex scale free distribution of Josephson junctions. ==History== The term ''superstripes'' was introduced in 2000 at the international conference on "Stripes and High Tc Superconductivity" held in Rome to describe the particular phase of matter where a broken symmetry appearing at a transition from a phase with higher dimensionality N (3D or 2D) to a phase with lower dimensionality N-1 (2D or 1D) favors the superconducting or superfluid phase and it could increase the normal to superconducting transition temperature with the possible emergence of high-temperature superconductivity. The term ''superstripes scenario'' was introduced to make the key difference with the stripes scenario where the phase transition from a phase with higher dimensionality N (like a 2D electron gas) to the phase with broken symmetry and lower dimensionality (like a quasi 1D striped fluid) competes and suppresses the transition temperature to the superfluid phase and favors modulated striped magnetic ordering. In the broken symmetry of superstripes phase the structural modulation coexists and favors high-temperature superconductivity.〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Superstripes」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|