|
Scientific Management, also called Taylorism,〔 Mitcham, Carl and Adam, Briggle ''Management'' in Mitcham (2005) p. 1153, quote: 〕 is a theory of management that analyzes and synthesizes workflows. Its main objective is improving economic efficiency, especially labor productivity. It was one of the earliest attempts to apply science to the engineering of processes and to management. Its development began in the United States with Frederick Winslow Taylor in the 1880s and '90s within the manufacturing industries. Its peak of influence came in the 1910s; by the 1920s, it was still influential but had entered into competition and syncretism with opposing or complementary ideas. Although scientific management as a distinct theory or school of thought was obsolete by the 1930s, most of its themes are still important parts of industrial engineering and management today. These include analysis; synthesis; logic; rationality; empiricism; work ethic; efficiency and elimination of waste; standardization of best practices; disdain for tradition preserved merely for its own sake or to protect the social status of particular workers with particular skill sets; the transformation of craft production into mass production; and knowledge transfer between workers and from workers into tools, processes, and documentation. ==Pursuit of economic efficiency== While the terms "scientific management" and "Taylorism" are commonly treated as synonymous, the work of Frederick Taylor marks only the ''first form'' of scientific management, followed by other approaches; thus in today's management theory, Taylorism is sometimes called, or considered a subset of, the ''classical perspective'' on scientific management. Taylor's own names for his approach initially included "shop management" and "process management". When Louis Brandeis popularized the term "scientific management" in 1910,〔, (pp. 15–21 ).〕 Taylor recognized it as another good name for the concept, and adopted it in his 1911 monograph. Taylor rejected the notion, which was universal in his day and still held today, that the trades, including manufacturing, were resistant to analysis and could only be performed by craft production methods. In the course of his empirical studies, Taylor examined various kinds of manual labor. For example, most bulk materials handling was manual at the time; material handling equipment as we know it today was mostly not developed yet. He looked at shoveling in the unloading of railroad cars full of ore; lifting and carrying in the moving of iron pigs at steel mills; the manual inspection of bearing balls; and others. He discovered many concepts that were not widely accepted at the time. For example, by observing workers, he decided that labor should include rest breaks so that the worker has time to recover from fatigue, either physical (as in shoveling or lifting) or mental (as in the ball inspection case). Workers were allowed to take more rests during work, and productivity increased as a result.〔 Subsequent forms of scientific management were articulated by Taylor's disciples, such as Henry Gantt; other engineers and managers, such as Benjamin S. Graham; and other theorists, such as Max Weber. Taylor's work also contrasts with other efforts, including those of Henri Fayol and those of Frank Gilbreth, Sr. and Lillian Moller Gilbreth (whose views originally shared much with Taylor's but later diverged in response to Taylorism's inadequate handling of human relations). Taylorism, in its strict sense, became obsolete by the 1930s, and by the 1960s the term "scientific management" was no longer favored in contemporaneous management theory. However, called by other names, many aspects of scientific management have persisted in later management theories. In blending art, academic science, and applied science, modern management practice includes Taylorism as one of its ancestors. The process of improving on Taylorism's view of human resources began as soon as Taylor's works had been published (as evidenced by, for example, James Hartness's motivation to publish his ''Human Factor'' in 1912, or the Gilbreths' work), and each subsequent decade brought further evolution. Flourishing in the late 19th and early 20th century, scientific management built on earlier pursuits of economic efficiency. While it was prefigured in the folk wisdom of thrift, it favored empirical methods to determine efficient procedures rather than perpetuating established traditions. Thus it was followed by a profusion of successors in applied science, including time and motion study, the Efficiency Movement (which was a broader cultural echo of scientific management's impact on business managers specifically), Fordism, operations management, operations research, industrial engineering, management science, manufacturing engineering, logistics, business process management, business process reengineering, lean manufacturing, and Six Sigma. There is a fluid continuum linking scientific management with the later fields, and the different approaches often display a high degree of compatibility. In management literature today, the term "scientific management" mostly refers to the work of Taylor and his disciples ("classical", implying "no longer current, but still respected for its seminal value") in contrast to newer, improved iterations of efficiency-seeking methods.. Taylorism is often mentioned along with Fordism, because it was closely associated with mass production methods in factories, which was its earliest application. Today, task-oriented optimization of work tasks is nearly ubiquitous in industry. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Scientific management」の詳細全文を読む スポンサード リンク
|