翻訳と辞書
Words near each other
・ Telerama
・ Telerate
・ Telereal Trillium
・ Telerecording
・ Telerehabilitation
・ TeleRetail AG
・ Telerghma
・ Telergma Airport
・ Telergy
・ Teleri
・ Telerig (village)
・ Telerig Nunatak
・ Telerig of Bulgaria
・ Telerik
・ Telerin
Telerobotics
・ Teleroboxer
・ Telerop 2009 – Es ist noch was zu retten
・ Teleroute
・ TELES
・ Teles
・ Teles of Megara
・ Teles Pires
・ Teles Pires Dam
・ Teles River
・ Telesaar
・ Telesail Technology
・ Telesarchus
・ Telesarchus (disambiguation)
・ Telesarchus (military commander)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Telerobotics : ウィキペディア英語版
Telerobotics

Telerobotics is the area of robotics concerned with the control of semi-autonomous robots from a distance, chiefly using Wireless network (like Wi-Fi, Bluetooth, the Deep Space Network, and similar) or tethered connections. It is a combination of two major subfields, teleoperation and telepresence.
== Teleoperation ==
Teleoperation indicates operation of a machine at a distance. It is similar in meaning to the phrase "remote control" but is usually encountered in research, academic and technical environments. It is most commonly associated with robotics and mobile robots but can be applied to a whole range of circumstances in which a device or machine is operated by a person from a distance.

Teleoperation is standard term in use both in research and technical communities and is by far the most standard term for referring to operation at a distance. This is opposed to "telepresence" that is a less standard term and might refer to a whole range of existence or interaction that include a remote connotation.
A telemanipulator (or teleoperator) is a device that is controlled remotely by a human operator. If such a device has the ability to perform autonomous work, it is called a telerobot. If the device is completely autonomous, it is called a robot. In simple cases the controlling operator's command actions correspond directly to actions in the device controlled, as for example in a radio controlled model aircraft or a tethered deep submergence vehicle. Where communications delays make direct control impractical (such as a remote planetary rover), or it is desired to reduce operator workload (as in a remotely controlled spy or attack aircraft), the device will not be controlled directly, instead being commanded to follow a specified path. At increasing levels of sophistication the device may operate somewhat independently in matters such as obstacle avoidance, also commonly employed in planetary rovers.
Devices designed to allow the operator to control a robot at a distance is sometimes called telecheric robotics.
Two major components of Telerobotics and Telepresence are the visual and control applications. A remote camera provides a visual representation of the view from the robot. Placing the robotic camera in a perspective that allows intuitive control is a recent technique that although based in Science Fiction (Robert A. Heinlein's Waldo 1942) has not been fruitful as the speed, resolution and bandwidth have only recently been adequate to the task of being able to control the robot camera in a meaningful way. Using a head mounted display, the control of the camera can be facilitated by tracking the head as shown in the figure below.
This only works if the user feels comfortable with the latency of the system, the lag in the response to movements, the visual representation. Any issues such as, inadequate resolution, latency of the video image, lag in the mechanical and computer processing of the movement and response, and optical distortion due to camera lens and head mounted display lenses, can cause the user 'simulator sickness' that is exacerbated by the lack of vestibular stimulation with visual representation of motion.
Mismatch between the users motions such as registration errors, lag in movement response due to overfiltering, inadequate resolution for small movements, and slow speed can contribute to these problems.
The same technology can control the robot, but then the eye–hand coordination issues become even more pervasive through the system, and user tension or frustration can make the system difficult to use.
Ironically, the tendency to build robots has been to minimize the degrees of freedom because that reduces the control problems. Recent improvements in computers has shifted the emphasis to more degrees of freedom, allowing robotic devices that seem more intelligent and more human in their motions. This also allows more direct teleoperation as the user can control the robot with their own motions.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Telerobotics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.