|
Torx (pronounced ), developed in 1967〔 filed 1967-03-21〕 by Camcar Textron,〔Camcar eventually became part of Textron Fastening Systems in the 1990s. In 2006 Textron Fastening Systems was sold to Platinum Equities, LLC, of Beverly Hills, California. They renamed the company (Acument Global Technologies ), which as of 2010 includes Avdel, Camcar, Ring Screw, and others. In 2014, Acument was sold from Platinum Equity to Fontana Gruppo (http://www.platinumequity.com/news/907/platinum-equity-sells-acument-to-fontana-gruppo).〕 is the trademark for a type of screw head characterized by a 6-point star-shaped pattern. A popular generic name for the drive is ''star'', as in star screwdriver or star bits. The official generic name, standardized by the International Organization for Standardization as ISO 10664, is hexalobular internal. This is sometimes abbreviated in databases and catalogs as 6lobe (starting with numeral "6", not a capital "G"). Torx Plus is an improved head profile. Torx screws are commonly found on automobiles, motorcycles, bicycle brake systems (disc brakes), hard disk drives, computer systems and consumer electronics. Initially, they were sometimes used in applications requiring tamper resistance, since the drive systems and screwdrivers were not widely available; as drivers became more common, tamper-resistant variants, as described below, were developed. Torx screws are also becoming increasingly popular in construction industries. ==Principles of operation== By design, Torx head screws resist cam-out better than Phillips head or slot head screws.〔 Where Phillips heads were designed to ''cause'' the driver to cam out, to prevent overtightening, Torx heads were designed to ''prevent'' cam-out. The development of better torque-limiting automatic screwdrivers for use in factories allowed this change. Rather than rely on the tool to slip out of the screw head when a torque level is reached, which risks damage to the driver tip, screw head, and/or workpiece, torque-limiting driver designs achieve a desired torque consistently. The manufacturer claims that this combination can increase tool bit life by ten times or more. The Torx design allows for a higher torque to be exerted than a similarly sized conventional hex socket head without damaging the head and/or the tool.〔 The diagram on the right depicts the interaction between the male and female components of a conventional hex drive and a Torx drive. The clearance between the components is exaggerated for clarity. The diagram does not show a true Torx profile, but illustrates the general shape and geometry. The green circle, passing through the six points of contact between the two components, represents the direction of the rotational force being exerted at each of those points. Because the plane of contact is not perpendicular to this circle, a radial force is also generated which tends to "burst" the female component and "crush" the male one. If this radial force component is too great for the material to withstand, it will cause the corners to be rounded off one or both components or will split the sides of the female part. The magnitude of this force is proportional to the cotangent of the angle (depicted in orange) between the green circle and the contact plane. It can be seen that for the Torx type of design, the angle is much closer to 90 degrees than in the case of the hex head, and so for a given torque the potentially damaging radial force is much lower. This property allows the head of the fastener to be smaller for the same required torque, which can be an advantage in applications where space to accommodate the head is limited. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Torx」の詳細全文を読む スポンサード リンク
|