|
|- |bgcolor=#e7dcc3|Coxeter diagram|| |- |bgcolor=#e7dcc3|Faces||2''n'' kites |- |bgcolor=#e7dcc3|Edges||4''n'' |- |bgcolor=#e7dcc3|Vertices||2''n'' + 2 |- |bgcolor=#e7dcc3|Face configuration||V3.3.3.''n'' |- |bgcolor=#e7dcc3|Symmetry group||D''n''d, (), (2 *''n''), order 4''n'' |- |bgcolor=#e7dcc3|Rotation group||D''n'', ()+, (22''n''), order 2''n'' |- |bgcolor=#e7dcc3|Dual polyhedron||antiprism |- |bgcolor=#e7dcc3|Properties||convex, face-transitive |} The ''n''-gonal trapezohedron, antidipyramid or deltohedron is the dual polyhedron of an ''n''-gonal antiprism. Its 2''n'' faces are congruent kites (also called trapezia or deltoids). The faces are symmetrically staggered. The ''n''-gon part of the name does not reference the faces here but arrangement of vertices around an axis of symmetry. The dual ''n''-gonal antiprism has two actual ''n''-gon faces. An ''n''-gonal trapezohedron can be decomposed into two equal ''n''-gonal pyramids and an ''n''-gonal antiprism. ==Name== These figures, sometimes called delt''o''hedra, must not be confused with delt''a''hedra, whose faces are equilateral triangles. In texts describing the crystal habits of minerals, the word ''trapezohedron'' is often used for the polyhedron properly known as a deltoidal icositetrahedron. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Trapezohedron」の詳細全文を読む スポンサード リンク
|