翻訳と辞書 |
Truncated great icosahedron : ウィキペディア英語版 | Truncated great icosahedron
In geometry, the truncated great icosahedron is a nonconvex uniform polyhedron, indexed as U55. It is given a Schläfli symbol t or t0,1 as a truncated great icosahedron. == Cartesian coordinates == Cartesian coordinates for the vertices of a ''truncated great icosahedron'' centered at the origin are all the even permutations of : (±1, 0, ±3/τ) : (±2, ±1/τ, ±1/τ3) : (±(1+1/τ2), ±1, ±2/τ) where τ = (1+√5)/2 is the golden ratio (sometimes written φ). Using 1/τ2 = 1 − 1/τ one verifies that all vertices are on a sphere, centered at the origin, with the radius squared equal to 10−9/τ. The edges have length 2.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Truncated great icosahedron」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|