|
Acharya Virasena was an 8th-century Indian mathematician and Jain philosopher and scholar. He was a digambara monk and belonged to the lineage of Acharya Kundakunda.〔 He is also known to be a famous orator and an accomplished poet.〔 His most reputed work is the Jain treatise Dhavala.〔Satkhandagama : Dhavala (Jivasthana) Satparupana-I (Enunciation of Existence-I) An English Translation of Part 1 of the Dhavala Commentary on the Satkhandagama of Acarya Pushpadanta & Bhutabali Dhavala commentary by Acarya Virasena English tr. by Prof. Nandlal Jain, Ed. by Prof. Ashok Jain ISBN 9788186957479〕 Late Dr. Hiralal Jain places the completion of this treatise in 816 AD. Virasena was a noted mathematician. He gave the derivation of the volume of a frustum by a sort of infinite procedure. He worked with the concept of ''ardhaccheda'': the number of times a number could be divided by 2; effectively base-2 logarithms. He also worked with logarithms in base 3 (trakacheda) and base 4 (caturthacheda). Virasena gave the approximate formula ''C'' = 3''d'' + (16''d''+16)/113 to relate the circumference of a circle, ''C'', to its diameter, ''d''. For large values of ''d'', this gives the approximation π ≈ 355/113 = 3.14159292..., which is more accurate than the approximation π ≈ 3.1416 given by Aryabhata in the ''Aryabhatiya''. ==See also== *Indian mathematics *Indian mathematicians 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Virasena」の詳細全文を読む スポンサード リンク
|