|
WWVB is a NIST time signal radio station near Fort Collins, Colorado, co-located with WWV. WWVB is the station that radio-controlled clocks in most of North America use to synchronize themselves. The 70 kW ERP signal transmitted from WWVB is a continuous 60 kHz carrier wave, the frequency of which is derived from a set of atomic clocks located at the transmitter site, yielding a frequency uncertainty of less than 1 part in 10. A one-bit-per-second time code, which is based on the IRIG "H" time code format and derived from the same set of atomic clocks, is then modulated onto the carrier wave using pulse width modulation and amplitude-shift keying. A single complete frame of time code begins at the start of each minute, lasts one minute, and conveys the year, day of year, hour, minute, and other information as of the beginning of the minute. While most time signals encode the local time of the broadcasting nation, the United States spans multiple time zones, so WWVB broadcasts the time in Coordinated Universal Time (UTC). Radio-controlled clocks can then apply time zone and daylight saving time offsets as needed to display local time. In 2011, NIST estimated the number of radio clocks and wristwatches equipped with a WWVB receiver at over 50 million.〔(All Time, All the Time: Improving NIST Radio )〕 == History == LF and VLF (very low frequency) broadcasts have long been used to distribute time and frequency standards. As early as 1904, the United States Naval Observatory (USNO) was broadcasting time signals from the city of Boston as an aid to navigation. This experiment and others like it made it evident that LF and VLF signals could cover a large area using a relatively small amount of power. By 1923, NIST radio station WWV had begun broadcasting standard carrier signals to the public on frequencies ranging from 75 to 2000 kHz. These signals were used to calibrate radio equipment, which became increasingly important as more and more stations became operational. Over the years, many radio navigation systems were designed using stable time and frequency signals broadcast on the LF and VLF bands. The most well known of these navigation systems is LORAN-C, which allows ships and planes to navigate via reception of 100 kHz signals broadcast from multiple transmitters. What is now WWVB began as radio station KK2XEI in July 1956. The transmitter was located in Boulder, Colorado, and the effective radiated power (ERP) was just 1.4 W. Even so, the signal was able to be monitored at Harvard University in Massachusetts. The purpose of this experimental transmission was to show that the radio path was stable and the frequency error was small at low frequencies. In 1962, NIST (then called the National Bureau of Standards or NBS) began building a new facility at a site near Fort Collins, Colorado. This site became the home of WWVB and WWVL, a 20 kHz transmitter that was moved from the mountains west of Boulder. The site was attractive for several reasons, one being its exceptionally high ground conductivity, which was due to the high alkalinity of the soil. It was also reasonably close to Boulder (about 80 km, 49.3 mi), which made it easy to staff and manage, but much farther away from the mountains, which made it a better choice for broadcasting an omnidirectional signal. WWVB went on the air on July 5, 1963, broadcasting a 7 kW ERP signal on 60 kHz. WWVL began transmitting a 500 W ERP signal on 20 kHz the following month, using frequency-shift keying, shifting from 20 kHz to 26 kHz, to send data. The WWVL broadcast was discontinued in July 1972, while WWVB became a permanent part of the nation’s infrastructure. A time code was added to WWVB on July 1, 1965. This made it possible for clocks to be designed that could receive the signal, decode it, and then automatically synchronize themselves. The time code format has changed only slightly since 1965; it uses a scheme known as binary coded decimal (BCD) which uses four binary digits (bits) to send each decimal digit. The ERP of WWVB has twice been increased: To 50 kW in 1999, and to 70 kW in 2005. The power increase made the coverage area much larger, and made it easier for tiny receivers with simple antennas to receive the signal. This resulted in the introduction of many new low cost radio controlled clocks that “set themselves” to agree with NIST time. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「WWVB」の詳細全文を読む スポンサード リンク
|