|
In algebraic geometry and string theory, the phenomenon of wall-crossing describes the discontinuous change of a certain quantity, such as an integer geometric invariant, an index or a space of BPS state, across a codimension-one wall in a space of stability conditions, a so-called wall of marginal stability. ==References== * Kontsevich, M. and Soibelman, Y. "Stability structures, motivic Donaldson–Thomas invariants and cluster transformations" (2008). . * M. Kontsevich, Y. Soibelman, "Motivic Donaldson–Thomas invariants: summary of results", * Joyce, D. and Song, Y. "A theory of generalized Donaldson–Thomas invariants," (2008). . * Gaiotto, D. and Moore, G. and Neitzke, A. "Four-dimensional wall-crossing via three-dimensional field theory" (2008). . * Mina Aganagic, Hirosi Ooguri, Cumrun Vafa, Masahito Yamazaki, "Wall crossing and M-theory", * Kontsevich, M. and Soibelman, Y., "Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry", 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Wall-crossing」の詳細全文を読む スポンサード リンク
|