翻訳と辞書 |
Mahler's 3/2 problem In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers". A Z-number is a real number ''x'' such that the fractional parts : are less than 1/2 for all natural numbers ''n''. Kurt Mahler conjectured in 1968 that there are no Z-numbers. More generally, for a real number α, define Ω(α) as : Mahler's conjecture would thus imply that Ω(3/2) exceeds 1/2. Flatto, Lagarias, and Pollington showed that : for rational ''p''/''q''. ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mahler's 3/2 problem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|