|
|Section2= |Section7= |Section8= }} Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula . Several isomers are possible, each of which can be viewed as a quinone derivative. The term anthraquinone, however, almost invariably refers to one specific isomer, 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) wherein the keto groups are located on the central ring. It is a building block of many dyes and is used in bleaching pulp for papermaking. It is a yellow highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. For instance, it is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. ==Synthesis== 9,10-Anthraquinone is obtained industrially by the oxidation of anthracene, a reaction that is localized at the central ring. Chromium(VI) is the typical oxidant. It is also prepared by the Friedel-Crafts reaction of benzene and phthalic anhydride in presence of AlCl3. The resulting o-benzoylbenzoic acid then undergoes cyclization, forming anthraquinone. This reaction is useful for producing substituted anthraquinones. The Diels-Alder reaction of naphthoquinone and butadiene followed by oxidative dehydrogenation will also produce 9,10-anthraquinone. Lastly, BASF has developed a process that proceeds via the acid-catalyzed dimerization of styrene to give a 1,3-diphenylbutene, which then can be transformed to the anthaquinone. It also arises via the Rickert-Alder reaction, a retro-Diels-Alder reaction. In a classic (1905) organic reaction called the Bally–Scholl synthesis, named after Oscar Bally and Roland Scholl, anthraquinone condenses with glycerol forming benzanthrone. In this reaction, the quinone is first reduced with copper metal in sulfuric acid (converting one ketone group into a methylene group) after which the glycerol is added. : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「anthraquinone」の詳細全文を読む スポンサード リンク
|