|
In the context of biochemistry, avidity refers to the accumulated strength of ''multiple'' affinities of individual non-covalent binding interactions, such as between a protein receptor and its ligand, and is commonly referred to as functional affinity. As such, avidity is distinct from affinity, which describes the strength of a ''single'' interaction. However, because individual binding events increase the likelihood of other interactions to occur (i.e. increase the local concentration of each binding partner in proximity to the binding site), avidity should not be thought of as the mere sum of its constituent affinities but as the combined effect of all affinities participating in the biomolecular interaction. Biomolecules often form heterogenous complexes or homogenous oligomers and multimers or polymers. If clustered proteins form an organized matrix, such as the clathrin-coat, the interaction is a described as matricity. ==Antibody-antigen interaction== Avidity is commonly applied to antibody interactions in which multiple antigen-binding sites simultaneously interact with the target antigenic epitopes, often in multimerized structures. Individually, each binding interaction may be readily broken, however, when many binding interactions are present at the same time, transient unbinding of a single site does not allow the molecule to diffuse away, and binding of that weak interaction is likely to be restored. Each antibody has at least two antigen-binding sites, therefore antibodies are bivalent to multivalent. Avidity (functional affinity) is the accumulated strength of multiple affinities. For example IgM is said to have low affinity but high avidity because it has 10 weak binding sites for antigen as opposed to the 2 stronger binding sites of IgG, IgE and IgD with higher single binding affinities. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「avidity」の詳細全文を読む スポンサード リンク
|