|
In physical cosmology, baryogenesis is the generic term for the hypothetical physical processes that produced an asymmetry (imbalance) between baryons and antibaryons produced in the very early universe. The baryonic matter that remains today, following the baryonic-antibaryonic matter annihilation, makes up the universe. Baryogenesis theories (the most important being electroweak baryogenesis and GUT baryogenesis) employ quantum field theory, and statistical physics, to describe such possible mechanisms. The difference between baryogenesis theories is the description of the interactions between fundamental particles. The next step after baryogenesis is the much better understood Big Bang nucleosynthesis, during which light atomic nuclei began to form. == Background == The Dirac equation,〔 〕 formulated by Paul Dirac around 1928 as part of the development of relativistic quantum mechanics, predicts the existence of antiparticles along with the expected solutions for the corresponding particles. Since that time, it has been verified experimentally that every known kind of particle has a corresponding antiparticle. The CPT theorem guarantees that a particle and its antiparticle have exactly the same mass and lifetime, and exactly opposite charge. Given this symmetry, it is puzzling that the universe does not have equal amounts of matter and antimatter. Indeed, there is no experimental evidence that there are any significant concentrations of antimatter in the observable universe. There are two main interpretations for this disparity: either the universe began with a small preference for matter (total baryonic number of the universe different from zero), or the universe was originally perfectly symmetric, but somehow a set of phenomena contributed to a small imbalance in favour of matter over time. The second point of view is preferred, although there is no clear experimental evidence indicating either of them to be the correct one. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「baryogenesis」の詳細全文を読む スポンサード リンク
|