翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

biofouling : ウィキペディア英語版
biofouling

Biofouling or biological fouling is the accumulation of microorganisms, plants, algae, or animals on wetted surfaces. Such accumulation is referred to as epibiosis when the host surface is another organism and the relationship is not parasitic.
Antifouling is the ability of specifically designed coatings to remove or prevent biofouling by any number of organisms on wetted surfaces. Since biofouling can occur almost anywhere water is present, biofouling poses risks to a wide variety of objects such as medical devices and membranes, as well as to entire industries, such as paper manufacturing, food processing, underwater construction, and desalination plants.〔 Specifically, the buildup of biofouling on marine vessels poses a significant problem. In some instances, the hull structure and propulsion systems can be damaged. Over time, the accumulation of biofoulers on hulls can increase both the hydrodynamic volume of a vessel and the frictional effects leading to increased drag of up to 60%〔 The drag increase has been seen to decrease speeds by up to 10%, which can require up to a 40% increase in fuel to compensate. With fuel typically comprising up to half of marine transport costs, antifouling methods are estimated to save the shipping industry around $60 billion per year.〔 Increased fuel use due to biofouling contributes to adverse environmental effects and is predicted to increase emissions of carbon dioxide and sulfur dioxide between 38 and 72% by 2020.
A variety of antifouling methods have historically been implemented to combat biofouling. Recently, antifouling methods inspired by living organisms have become the subjects of intense research by scientists looking for more environmentally friendly and effective ways of reducing biofouling. This type of design imitation is known as biomimicry.
==Biology==
The variety among biofouling organisms is highly diverse and extends far beyond attachment of barnacles and seaweeds. According to some estimates, over 1700 species comprising over 4000 organisms are responsible for biofouling. Biofouling is divided into microfouling — biofilm formation and bacterial adhesion — and macrofouling — attachment of larger organisms. Due to the distinct chemistry and biology that determine what prevents them from settling, organisms are also classified as hard or soft fouling types. Calcareous (hard) fouling organisms include barnacles, encrusting bryozoans, mollusks, polychaete and other tube worms, and zebra mussels. Examples of non-calcareous (soft) fouling organisms are seaweed, hydroids, algae and biofilm "slime". Together, these organisms form a fouling community.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「biofouling」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.