翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

chemiluminescence : ウィキペディア英語版
chemiluminescence

Chemiluminescence (sometimes "chemoluminescence") is the emission of light (luminescence), as the result of a chemical reaction. There may also be limited emission of heat. Given reactants A and B, with an excited intermediate ◊,
:() + () → () → () + light
For example, if () is luminol and () is hydrogen peroxide in the presence of a suitable catalyst we have:
:luminol + hydrogen peroxide → 3-APA() → 3-APA + light
where:
* 3-APA is 3-aminophthalate
* 3-APA() is the vibronic excited state fluorescing as it decays to a lower energy level.
The decay of this excited state() to a lower energy level causes light emission. In theory, one photon of light should be given off for each molecule of reactant. This is equivalent to Avogadro's number of photons per mole of reactant. In actual practice, non-enzymatic reactions seldom exceed 1% QC, quantum efficiency.
In a chemical reaction, reactants collide to form a transition state, the enthalpic maximum in a reaction coordinate diagram, which proceeds to the product. Normally, reactants form products of lesser chemical energy. The difference in energy between reactants and products, represented as \Delta H_, is turned into heat, physically realized as excitations in the vibrational state of the normal modes of the product. Since vibrational energy is generally much greater than the thermal agitation, it rapidly disperses in the solvent through molecular rotation. This is how exothermic reactions make their solutions hotter. In a chemiluminescent reaction, the direct product of the reaction is an excited electronic state. This state then decays into an electronic ground state and emits light through either an allowed transition (analogous to fluorescence) or a forbidden transition (analogous to phosphorescence), depending partly on the spin state of the electronic excited state formed.
Chemiluminescence differs from fluorescence or phosphorescence in that the electronic excited state is the product of a chemical reaction rather than of the absorption of a photon. It is the antithesis of a photochemical reaction, in which light is used to drive an endothermic chemical reaction. Here, light is ''generated'' from a chemically exothermic reaction.
A standard example of chemiluminescence in the laboratory setting is the luminol test. Here, blood is indicated by luminescence upon contact with iron in hemoglobin. When chemiluminescence takes place in living organisms, the phenomenon is called bioluminescence. A light stick emits light by chemiluminescence.
==Liquid-phase reactions==

*Luminol in an alkaline solution with hydrogen peroxide in the presence of iron or copper,〔(【引用サイトリンク】 url=http://www.3rd1000.com/labs/lumine.htm )〕 or an auxiliary oxidant, produces chemiluminescence. The luminol reaction is

:luminol + H2O2 → 3-APA() → 3-APA + light

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「chemiluminescence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.