|
Coulometry is the name given to a group of techniques in analytical chemistry that determine the amount of matter transformed during an electrolysis reaction by measuring the amount of electricity (in coulombs) consumed or produced. It is named after Charles-Augustin de Coulomb. There are two basic categories of coulometric techniques. ''Potentiostatic coulometry'' involves holding the electric potential constant during the reaction using a potentiostat. The other, called ''coulometric titration'' or ''amperostatic coulometry'', keeps the current (measured in amperes) constant using an amperostat. ==Potentiostatic coulometry== Potentiostatic coulometry is a technique most commonly referred to as "bulk electrolysis". The working electrode is kept at a constant potential and the current that flows through the circuit is measured. This constant potential is applied long enough to fully reduce or oxidize all of the electroactive species in a given solution. As the electroactive molecules are consumed, the current also decreases, approaching zero when the conversion is complete. The sample mass, molecular mass, number of electrons in the electrode reaction, and number of electrons passed during the experiment are all related by Faraday's laws. It follows that, if three of the values are known, then the fourth can be calculated. Bulk electrolysis is often used to unambiguously assign the number of electrons consumed in a reaction observed through voltammetry. It also has the added benefit of producing a solution of a species (oxidation state) which may not be accessible through chemical routes. This species can then be isolated or further characterized while in solution. The rate of such reactions is not determined by the concentration of the solution, but rather the mass transfer of the electroactive species in the solution to the electrode surface. Rates will increase when the volume of the solution is decreased, the solution is stirred more rapidly, or the area of the working electrode is increased. Since mass transfer is so important the solution is stirred during a bulk electrolysis. However, this technique is generally not considered a hydrodynamic technique, since a laminar flow of solution against the electrode is neither the objective nor outcome of the stirring. The extent to which a reaction goes to completion is also related to how much greater the applied potential is than the reduction potential of interest. In the case where multiple reduction potentials are of interest, it is often difficult to set an electrolysis potential a "safe" distance (such as 200 mV) past a redox event. The result is incomplete conversion of the substrate, or else conversion of some of the substrate to the more reduced form. This factor must be considered when analyzing the current passed and when attempting to do further analysis/isolation/experiments with the substrate solution. An advantage to this kind of analysis over electrogravimetry is that it does not require that the product of the reaction be weighed. This is useful for reactions where the product does not deposit as a solid, such as the determination of the amount of arsenic in a sample from the electrolysis of arsenous acid (H3AsO3) to arsenic acid (H3AsO4). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「coulometry」の詳細全文を読む スポンサード リンク
|