翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

degaussing : ウィキペディア英語版
degaussing
Degaussing is the process of decreasing or eliminating a remnant magnetic field. It is named after the gauss, a unit of magnetism, which in turn was named after Carl Friedrich Gauss. Due to magnetic hysteresis, it is generally not possible to reduce a magnetic field completely to zero, so degaussing typically induces a very small "known" field referred to as bias. Degaussing was originally applied to reduce ships' magnetic signatures during the Second World War. Degaussing is also used to reduce magnetic fields in CRT monitors and to destroy data held on magnetic data storage.
==Ships' hulls==

The term was first used by then Cmdr Charles F. Goodeve, RCNVR, during World War II, while trying to counter the German magnetic mines that were playing havoc with the British fleet. The mines detected the increase in magnetic field when the steel in a ship concentrated the Earth's magnetic field over it. Admiralty scientists, including Goodeve, developed a number of systems to induce a small "N-pole up" field into the ship to offset this effect, meaning that the net field was the same as background. Since the Germans used the gauss as the unit of the strength of the magnetic field in their mines' triggers (this was not yet a standard measure), Goodeve referred to the various processes to counter the mines as "degaussing". The term became a common word.
The original method of degaussing was to install electromagnetic coils into the ships, known simply as coiling. In addition to being able to bias the ship continually, coiling also allowed the bias field to be reversed in the southern hemisphere, where the mines were set to detect "S-pole down" fields. British ships, notably cruisers and battleships, were well protected by about 1943.
Installing such special equipment was, however, far too expensive and difficult to service all ships that would need it, so the navy developed an alternative called wiping, which Goodeve also devised, and which is now also called deperming. This procedure simply dragged a large electrical cable along the side of the ship with a pulse of about 2000 amperes flowing through it. This induced the proper field into the ship in the form of a slight bias. It was originally thought that the pounding of the sea and the ship's engines would slowly randomize this field, but in testing, this was found not to be a real problem. A more serious problem was later realized: as a ship travels through Earth's magnetic field, it will slowly pick up that field, counteracting the effects of the degaussing. From then on captains were instructed to change direction as often as possible to avoid this problem. Nevertheless the bias did wear off eventually, and ships had to be degaussed on a schedule. Smaller ships continued to use wiping through the war.
After the war, the capabilities of the magnetic fuses were greatly improved, by detecting not the field itself, but ''changes'' in it. This meant a degaussed ship with a magnetic "hot spot" would still set off the mine. Additionally, the precise orientation of the field was also measured, something a simple bias field could not remove, at least for all points on the ship. A series of ever-increasingly complex coils were introduced to offset these effects, with modern systems including no fewer than three separate sets of coils to reduce the field in all axes.
The US Navy tested, in April of 2009, a prototype of its High-Temperature Superconducting Degaussing Coil System, referred to as "HTS Degaussing". The system works by encircling the vessel with superconducting ceramic cables whose purpose is to neutralize the ship's magnetic signature, as in the legacy copper systems. The main advantage of the HTS Degaussing Coil system is greatly reduced weight (sometimes by as much as 80%) and increased efficiency.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「degaussing」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.