翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

dodecagon : ウィキペディア英語版
dodecagon

In geometry, a dodecagon is any 12-sided polygon or 12-gon.
==Regular dodecagon==

A ''regular dodecagon'' has Schläfli symbol and can be constructed as a truncated hexagon, t, or a twice-truncated triangle, tt.
It has all sides of equal length and all angles equal to 150°. It has 12 lines of symmetry and rotational symmetry of order 12. Its Schläfli symbol is .
The area of a regular dodecagon with side ''a'' is given by:
:\begin A & = 3 \cot\left(\frac \right) a^2 =
3 \left(2+\sqrt \right) a^2 \\
& \simeq 11.19615242\,a^2.
\end
Or, if ''R'' is the radius of the circumscribed circle,〔See also Kürschák's geometric proof on (the Wolfram Demonstration Project )〕
:A = 6 \sin\left(\frac\right) R^2 = 3 R^2.
And, if ''r'' is the radius of the inscribed circle,
:\begin A & = 12 \tan\left(\frac\right) r^2 =
12 \left(2-\sqrt \right) r^2 \\
& \simeq 3.2153903\,r^2.
\end
A simple formula for area (given the two measurements) is: \scriptstyle A\,=\,3ad where ''d'' is the distance between parallel sides.
Length ''d'' is the height of the dodecagon when it sits on a side as base, and the diameter of the inscribed circle.
By simple trigonometry, \scriptstyle d\,=\,a(1\,+\,2cos\,+\,2cos).
The perimeter for an inscribed dodecagon of radius 1 is 12√(2 - √3), or approximately 6.21165708246. 〔''Plane Geometry: Experiment, Classification, Discovery, Application'' by Clarence Addison Willis B., (1922) Blakiston's Son & Company, p. 249 ()〕
The perimeter for a circumscribed dodecagon of radius 1 is 24(2 – √3), or approximately 6.43078061835. Interestingly, this is double the value of the area of the ''inscribed'' dodecagon of radius 1. 〔''Elements of geometry''
by John Playfair, William Wallace, John Davidsons, (1814) Bell & Bradfute, p. 243 ()〕
With respect to the above-listed equations for area and perimeter, when the radius of the inscribed dodecagon is 1, note that the area of the inscribed dodecagon is 12(2 – √3) and the ''perimeter'' of this same inscribed dodecagon is 12√(2 - √3).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「dodecagon」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.