|
Electromagnetism is a branch of physics which involves the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force usually shows electromagnetic fields, such as electric fields, magnetic fields, and light. The electromagnetic force is one of the four fundamental interactions in nature. The other three fundamental interactions are the strong interaction, the weak interaction, and gravitation. The word ''electromagnetism'' is a compound form of two Greek terms, ἤλεκτρον, ''ēlektron'', "amber", and μαγνῆτις λίθος ''magnētis lithos'', which means "magnesian stone", a type of iron ore. The science of electromagnetic phenomena is defined in terms of the electromagnetic force, sometimes called the Lorentz force, which includes both electricity and magnetism as elements of one phenomenon. The electromagnetic force plays a major role in determining the internal properties of most objects encountered in daily life. Ordinary matter takes its form as a result of intermolecular forces between individual molecules in matter. Electrons are bound by electromagnetic wave mechanics into orbitals around atomic nuclei to form atoms, which are the building blocks of molecules. This governs the processes involved in chemistry, which arise from interactions between the electrons of neighboring atoms, which are in turn determined by the interaction between electromagnetic force and the momentum of the electrons. There are numerous mathematical descriptions of the electromagnetic field. In classical electrodynamics, electric fields are described as electric potential and electric current in Ohm's law, magnetic fields are associated with electromagnetic induction and magnetism, and Maxwell's equations describe how electric and magnetic fields are generated and altered by each other and by charges and currents. The theoretical implications of electromagnetism, in particular the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), led to the development of special relativity by Albert Einstein in 1905. Although electromagnetism is considered one of the four fundamental forces, at high energy the weak force and electromagnetism are unified. In the history of the universe, during the quark epoch, the electroweak force split into the electromagnetic and weak forces. ==History of the theory== Originally electricity and magnetism were thought of as two separate forces. This view changed, however, with the publication of James Clerk Maxwell's 1873 ''A Treatise on Electricity and Magnetism'' in which the interactions of positive and negative charges were shown to be regulated by one force. There are four main effects resulting from these interactions, all of which have been clearly demonstrated by experiments: # Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: unlike charges attract, like ones repel. # Magnetic poles (or states of polarization at individual points) attract or repel one another in a similar way and always come in pairs: every north pole is yoked to a south pole. # An electric current inside a wire creates a corresponding circular magnetic field outside the wire. Its direction (clockwise or counter-clockwise) depends on the direction of the current in the wire. # A current is induced in a loop of wire when it is moved towards or away from a magnetic field, or a magnet is moved towards or away from it, the direction of current depending on that of the movement. While preparing for an evening lecture on 21 April 1820, Hans Christian Ørsted made a surprising observation. As he was setting up his materials, he noticed a compass needle deflected away from magnetic north when the electric current from the battery he was using was switched on and off. This deflection convinced him that magnetic fields radiate from all sides of a wire carrying an electric current, just as light and heat do, and that it confirmed a direct relationship between electricity and magnetism. At the time of discovery, Ørsted did not suggest any satisfactory explanation of the phenomenon, nor did he try to represent the phenomenon in a mathematical framework. However, three months later he began more intensive investigations. Soon thereafter he published his findings, proving that an electric current produces a magnetic field as it flows through a wire. The CGS unit of magnetic induction (oersted) is named in honor of his contributions to the field of electromagnetism. His findings resulted in intensive research throughout the scientific community in electrodynamics. They influenced French physicist André-Marie Ampère's developments of a single mathematical form to represent the magnetic forces between current-carrying conductors. Ørsted's discovery also represented a major step toward a unified concept of energy. This unification, which was observed by Michael Faraday, extended by James Clerk Maxwell, and partially reformulated by Oliver Heaviside and Heinrich Hertz, is one of the key accomplishments of 19th century mathematical physics. It had far-reaching consequences, one of which was the understanding of the nature of light. Unlike what was proposed in Electromagnetism, light and other electromagnetic waves are at the present seen as taking the form of quantized, self-propagating oscillatory electromagnetic field disturbances which have been called photons. Different frequencies of oscillation give rise to the different forms of electromagnetic radiation, from radio waves at the lowest frequencies, to visible light at intermediate frequencies, to gamma rays at the highest frequencies. Ørsted was not the only person to examine the relationship between electricity and magnetism. In 1802, Gian Domenico Romagnosi, an Italian legal scholar, deflected a magnetic needle using electrostatic charges. Actually, no galvanic current existed in the setup and hence no electromagnetism was present. An account of the discovery was published in 1802 in an Italian newspaper, but it was largely overlooked by the contemporary scientific community. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「electromagnetism」の詳細全文を読む スポンサード リンク
|