翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

equipotential : ウィキペディア英語版
equipotential

Equipotential or isopotential in mathematics and physics refers to a region in space where every point in it is at the same potential.〔(Weisstein, Eric W. "Equipotential Curve." Wolfram MathWorld. Wolfram Research, Inc., n.d. Web. 22 Aug 2011. )〕〔("Equipotential Lines." HyperPhysics. Georgia State University, n.d. Web. 22 Aug 2011. ) 〕〔(Schmidt, Arthur G. "Equipotential Lines." Northwestern University. Northwestern University, n.d. Web. 22 Aug 2011. ) 〕 This usually refers to a scalar potential (in that case it is a level set of the potential), although it can also be applied to vector potentials. An equipotential of a scalar potential function in n-dimensional space is typically an (n−1)dimensional space. The del operator illustrates the relationship between a vector field and its associated scalar potential field.
Note that an equipotential region might be referred as being 'of equipotential' or simply be called 'an equipotential'.
An equipotential region of a scalar potential in three-dimensional space is often an equipotential surface, but it can also be a three-dimensional region in space. The gradient of the scalar potential (and hence also its opposite, as in the case of a vector field with an associated potential field) is everywhere perpendicular to the equipotential surface, and zero inside a three-dimensional equipotential region.
Electrical conductors offer an intuitive example. If ''a'' and ''b'' are any two points within or at the surface of a given conductor, and given there is no flow of charge being exchanged between the two points, then the potential difference is zero between the two points. Thus, an equipotential would contain both points ''a'' and ''b'' as they have the same potential. Extending this definition, an isopotential is the locus of all points that are of the same potential.
Gravity is perpendicular to the equipotential surfaces of the gravity potential, and in electrostatics and in the case of steady currents the electric field (and hence the electric current, if any) is perpendicular to the equipotential surfaces of the electric potential (voltage).
In gravity, a hollow sphere has a three-dimensional equipotential region inside, with no gravity (see shell theorem). In electrostatics a conductor is a three-dimensional equipotential region. In the case of a hollow conductor (Faraday cage〔("Electrostatics Explained." The University of Bolton. The University of Bolton, n.d. Web. 22 Aug 2011. )〕), the equipotential region includes the space inside.
A ball will not be accelerated by the force of gravity if it is resting on a flat, horizontal surface, because it is an equipotential surface.
== References ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「equipotential」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.