|
Glutaminase (, ''glutaminase I'', ''L-glutaminase'', ''glutamine aminohydrolase'') is an amidohydrolase enzyme that generates glutamate from glutamine. Glutaminase has tissue-specific isoenzymes. Glutaminase has an important role in glial cells. Glutaminase catalyzes the following reaction: Glutamine + H2O → Glutamate + NH3 == Tissue distribution == Glutaminase is expressed and active in periportal hepatocytes, where it generates NH3 (ammonia) for urea synthesis, as does glutamate dehydrogenase. Glutaminase is also expressed in the epithelial cells of the renal tubules, where the produced ammonia is excreted as ammonium ions. This excretion of ammonium ions is an important mechanism of renal acid-base regulation. During chronic acidosis, glutaminase is induced in the kidney, which leads to an increase in the amount of ammonium ions excreted. Glutaminase can also be found in the intestines, whereby hepatic portal ammonia can reach as high as 0.26 mM (compared to an arterial blood ammonia of 0.02 mM). One of the most important roles of glutaminase is found in the axonal terminals of neurons in the central nervous system. Glutamate is the most abundantly used excitatory neurotransmitter in the CNS. After being released into the synapse for neurotransmission, glutamate is rapidly taken up by nearby astrocytes, which convert it to glutamine. This glutamine is then supplied to the presynaptic terminals of the neurons, where glutaminases convert it back to glutamate for loading into synaptic vesicles. Although both "kidney-type" (GLS1) and "liver-type" (GLS2) glutaminases are expressed in brain, GLS2 has been reported to exist only in cellular nuclei in CNS neurons. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「glutaminase」の詳細全文を読む スポンサード リンク
|