|
|Section2= |Section3= }} Hydroxymethylfurfural (HMF), also 5-(Hydroxymethyl)furfural, is an organic compound derived from dehydration of certain sugars.〔Malgorzata E. Zakrzewska, Ewa Bogel-Lukasik, Rafal Bogel-Lukasik "Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfurals-A Promising Biomass-Derived Building Block" Chem. Rev., 2011, volume 111, 397. 〕〔Andreia A. Rosatella, Svilen P. Simeonov, Raquel F. M. Frade, Carlos A. M. Afonso "Critical Review 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological Properties, Synthesis and Synthetic Applications" Green Chem., 2011, volume 13, 754. 〕〔''Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources'' Robert-Jan van Putten, Jan C. van der Waal, Ed de Jong, Carolus B. Rasrendra, Hero J. Heeres, and Johannes G. de Vries Chemical Reviews 2013, vol. 113, pp. 1499–1597. 〕 This yellow low-melting solid is highly water-soluble. The molecule consists of a furan ring, containing both aldehyde and alcohol functional groups. HMF has been identified in a wide variety of baked goods. HMF, which is derived from hexoses, is a potential "carbon-neutral" feedstock for fuels and chemicals.〔(MIT Technology Review )〕 == Production and reactions== Related to the production of furfural, HMF is produced from sugars. It arises via the dehydration of fructose. Treatment of fructose with acids followed by liquid-liquid extraction into organic solvents such as methyl isobutyl ketone. The conversion is affected by various additives such as DMSO, 2-butanol, and polyvinyl pyrrolidone, which minimize the formation of side product. Ionic liquids facilitate the conversion of fructose to HMF.〔Ståhlberg, T.; Fu, W.; Woodley, J. M.; Riisager, A. "Synthesis of 5-(Hydroxymethyl)furfural in Ionic Liquids: Paving the Way to Renewable Chemicals" ChemSusChem. 2011, Volume 4, pages 451–458. 〕 When hexoses are hydrolyzed with hydrochloric acid, 5-chloromethylfurfural is produced instead of HMF. : In the image above are displayed in a series of chemical equilibria: fructopyranose 1, fructofuranose 2, two intermediate stages of dehydration (not isolated) 3,4 and finally HMF 5. Chromous chloride catalyzes the direct conversion of both fructose (yielding 90%+) and glucose (yielding 70%+) into an HMF. Cellulose can also be converted into HMF (yielding 55% at 96% purity), in a process that proceeds via the intermediacy of glucose and fructose.〔A. A. Rosatella, S. P. Simeonov, R. F. M. Frade and C. A. M. Afonso, "5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications", Green Chemistry 2011, vol. 13, 754-793. 〕 HMF can be converted to 2,5-dimethylfuran (DMF), a liquid that is a potential biofuel with a greater energy content than bioethanol. Oxidation of HMF gives 2,5-furandicarboxylic acid, which has been proposed as a replacement for terephthalic acid in the production of polyesters. Reduction gives 2,5-bis(hydroxymethyl)furan. Acid-catalysed hydrolysis converts HMF into gamma-valerolactone, with loss of formic acid. 〔van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J.,de Vries, J. G., "Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources", Chem. Rev. 2013, 113, 1499.〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「hydroxymethylfurfural」の詳細全文を読む スポンサード リンク
|