|
In non-standard analysis, a hyperinteger ''N'' is a hyperreal number equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1,2,3,...) in the ultrapower construction of the hyperreals. ==Discussion== The standard integer part function: : is defined for all real ''x'' and equals the greatest integer not exceeding ''x''. By the transfer principle of non-standard analysis, there exists a natural extension: : defined for all hyperreal ''x'', and we say that ''x'' is a hyperinteger if: :. Thus the hyperintegers are the image of the integer part function on the hyperreals. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「hyperinteger」の詳細全文を読む スポンサード リンク
|