翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

ionone : ウィキペディア英語版
ionone

| Section2 =
}}
The ionones are a series of closely related chemical substances that are part of a group of compounds known as rose ketones, which also includes damascones and damascenones. Ionones are aroma compounds found in a variety of essential oils, including rose oil. β-Ionone is a significant contributor to the aroma of roses, despite its relatively low concentration, and is an important fragrance chemical used in perfumery.〔
〕 The ionones are derived from the degradation of carotenoids.
The combination of α-ionone and β-ionone is characteristic of the scent of violets and used with other components in perfumery and flavouring to recreate their scent.
The carotenes α-carotene, β-carotene, γ-carotene, and the xanthophyll, and β-cryptoxanthin, can all be metabolized to β-ionone, and thus have vitamin A activity because they can be converted by plant-eating animals to retinol and retinal. Carotenoids that do not contain the β-ionone moiety cannot be converted to retinol, and thus have no vitamin A activity.
==Biosynthesis==
Carotenoids are the precursors of important fragrance compounds in several flowers. For example, a 2010 study of ionones in ''Osmanthus fragrans'' Lour. var. ''aurantiacus'' determined its essential oil contained the highest diversity of carotenoid-derived volatiles among the flowering plants investigated. A cDNA encoding a carotenoid cleavage enzyme, OfCCD1, was identified from transcripts isolated from flowers of ''O. fragrans'' Lour. The recombinant enzymes cleaved carotenes to produce α-ionone and β-ionone in ''in vitro'' assays.
The same study also discovered that carotenoid content, volatile emissions, and OfCCD1 transcript levels are subject to photorhythmic changes, and principally increased during daylight hours. At the times when OfCCD1 transcript levels reached their maxima, the carotenoid content remained low or slightly decreased. The emission of ionones was also higher during the day; however, emissions decreased at a lower rate than the transcript levels. Moreover, carotenoid content increased from the first to the second day, whereas the volatile release decreased, and the OfCCD1 transcript levels displayed steady-state oscillations, suggesting that the substrate availability in the cellular compartments is changing or other regulatory factors are involved in volatile norisoprenoid formation. The formation of ionones proceeds by a process mediated by the carotenoid dioxygenases.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「ionone」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.