|
Magnetobiology is the study of biological ''effects'' of mainly weak static and low-frequency magnetic fields, which do not cause heating of tissues. Magnetobiological effects have unique features that obviously distinguish them from thermal effects; often they are observed for alternating magnetic fields just in separate frequency and amplitude intervals. Also, they are dependent of simultaneously present static magnetic or electric fields and their polarization. Magnetobiology is a subset of bioelectromagnetics. Bioelectromagnetism and biomagnetism are the study of the ''production'' of electromagnetic and magnetic fields by biological organisms. The ''sensing'' of magnetic fields by organisms is known as magnetoreception. Biological effects of weak low frequency magnetic fields, less than about 0.1 millitesla (or 1 Gauss) and 100 Hz correspondingly, constitutes a physics problem. The effects look paradoxical, for the energy quantum of these electromagnetic fields is by many orders of value less than the energy scale of an elementary chemical act. On the other hand, the field intensity is not enough to cause any appreciable heating of biological tissues or irritate nerves by the induced electric currents. ==Effects== An example of a magnetobiological effect is the magnetic navigation by migrant animals. Many animal orders, such as certain birds, marine turtles, reptiles, amphibians and salmonoid fishes are able to detect small variations of the geomagnetic field and its magnetic inclination to find their seasonal habitats. They are said to use an "inclination compass". Certain crustaceans, spiny lobsters, bony fish, insects and mammals have been found to use a "polarity compass", whereas in snails and cartilageous fish the type of compass is as yet unknown. Little is known about other vertebrates and arthropods. Their perception can be on the order of tens of nanoteslas. Magnetic intensity as a component of the navigational ‘map’ of pigeons had been discussed since the late nineteenth century.〔Viguier C (1882) Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Revue Philosophique de la France et de l’Étranger 14:1–36.〕 One of the earliest publications to prove that birds use magnetic information was a 1972 study on the compass of European robins by Wolfgang Wiltschko. A 2014 double blinded study showed that European robins exposed to low level electromagnetic noise between about 20 kz and 20 MHz,could not orient themselves with their magnetic compass. When they entered aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude, their orientation reappeared. For human health effects see electromagnetic radiation and health. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「magnetobiology」の詳細全文を読む スポンサード リンク
|