翻訳と辞書 |
metaplasticity : ウィキペディア英語版 | metaplasticity Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of ''individual'' synapses. However this new form referred to the plasticity of the plasticity itself, thus the term ''meta''-plasticity. The idea is that the synapse's previous history of activity determines its current plasticity. This may play a role in some of the underlying mechanisms thought to be important in memory and learning such as Long-term potentiation (LTP), Long-term Depression (LTD) and so forth. These mechanisms depend on current synaptic "state", as set by ongoing extrinsic influences such as the level of synaptic inhibition, the activity of modulatory afferents such as catecholamines, and the pool of hormones affecting the synapses under study. Recently, it has become clear that the prior history of synaptic activity is an additional variable that influences the synaptic state, and thereby the degree, of LTP or LTD produced by a given experimental protocol. In a sense, then, synaptic plasticity is governed by an activity-dependent plasticity of the synaptic state; such plasticity of synaptic plasticity has been termed metaplasticity. There is little known about metaplasticity, and there is much research currently underway on the subject, despite its difficulty of study, because of its theoretical importance in brain and cognitive science. Most research of this type is done via cultured hippocampus cells or hippocampal slices. ==Hebbian plasticity== The brain is “plastic”, meaning it can be moulded and formed. This plasticity is what allows you to learn throughout your lifetime; your synapses change based on your experience. New synapses can be made, old ones destroyed, or existing ones can be strengthened or weakened. The original theory of plasticity is called “Hebbian plasticity”, named after Donald Hebb in 1949. A quick but effective summary of Hebbian theory is that “cells that fire together, wire together”, together being the key word here which will be explained shortly. Hebb described an early concept of the theory, not the actual mechanics themselves. Hebbian plasticity involves two mechanisms: LTP and LTD, discovered by Bliss and Lomo in 1973. LTP, or long-term potentiation, is the increase of synapse sensitivity due to a prolonged period of activity in both the presynaptic and postsynaptic neuron. This prolonged period of activity is normally concentrated electric impulses, usually around 100 Hz. It is called “coincidence” detection in that it only strengthens the synapse if there was sufficient activity in both the presynaptic and postsynaptic cells. If the postsynaptic cell does not become sufficiently depolarized then there is no coincidence detection and LTP/LTD do not occur. LTD, or long-term depression, works the same way however it focuses on a lack of depolarization coincidence. LTD can be induced by electrical impulses at around 5 Hz. These changes are synapse specific. A neuron can have many different synapses all controlled via the same mechanisms defined here. The earliest proposed mechanism for plastic activity is based around glutamate receptors and their ability to change in number and strength based on synapse activity. Glutamate binds two main receptor types: AMPA receptors (AMPARs) and NMDA receptors (NMDARs). These are named after drugs that bind to the receptors: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA), respectively, but they both bind glutamate. When a glutamatergic synapse releases glutamate it binds to any AMPA and the NMDA receptors present in the postsynaptic membrane. The AMPA receptors are ionotropic receptors that are responsible for fast synaptic transmission. In a nutshell the NMDA receptors evoke a response in the cell only when sufficient glutamate has been transmitted to cause that cell to depolarize enough to unblock the NMDA receptor. Sufficient depolarization in the membrane will cause the magnesium cation blockade in the NMDA receptors to vacate, thus allowing calcium influx into the cell. NMDA receptors are "coincidence detectors". They determine when the presynaptic and postsynaptic neuron are linked in time via activity. When this occurs, NMDA receptors become the control mechanism that dictates how the AMPA and NMDA receptors are to be rearranged. The rearrangement of AMPA and NMDA receptors has become the central focus of current studies of metaplasticity as it directly determines LTP and LTD thresholds. However, some evidence indicates that G protein-coupled receptors (GPCRs) are responsible for controlling NMDA receptor activity, which suggests that NMDAR-mediated changes in synaptic strength are modulated by the activity of GPCRs. There is large amounts of research focused on finding the specific enzymes and intracellular pathways involved in the NMDAR-mediated modulation of membrane AMPA receptors. Recent biochemical research has shown that a deficiency in the protein tenascin-R (TNR) leads to a metaplastic increase in the threshold for LTP induction. TNR is an extracellular-matrix protein expressed by oligodendrocytes during myelination.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「metaplasticity」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|