|
In number theory, a nontotient is a positive integer ''n'' which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(''x'') = ''n'' has no solution ''x''. In other words, ''n'' is a nontotient if there is no integer ''x'' that has exactly ''n'' coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions ''x'' = 1 and ''x'' = 2. The first few even nontotients are :14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, ... Least ''k'' such that the totient of ''k'' is ''n'' are :0, 1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, ... Greatest ''k'' such that the totient of ''k'' is ''n'' are :0, 2, 6, 0, 12, 0, 18, 0, 30, 0, 22, 0, 42, 0, 0, 0, 60, 0, 54, 0, 66, 0, 46, 0, 90, 0, 0, 0, 58, 0, 62, 0, 120, 0, 0, 0, 126, 0, 0, 0, 150, 0, 98, 0, 138, 0, 94, 0, 210, 0, 0, 0, 106, 0, 162, 0, 174, 0, 118, 0, 198, 0, 0, 0, 240, 0, 134, 0, 0, 0, 142, 0, 270, ... Number of ''k''s such that φ(''k'') = ''n'' are: :1, 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, ... According to Carmichael's conjecture there are no 1's in this sequence except the zeroth term. An even nontotient may be one more than a prime number, but never one less, since all numbers below a prime number are, by definition, coprime to it. To put it algebraically, for p prime: φ(''p'') = ''p'' − 1. Also, a pronic number ''n''(''n'' − 1) is certainly not a nontotient if ''n'' is prime since φ(''p''2) = ''p''(''p'' − 1). If a natural number ''n'' is a totient, it can be shown that ''n'' *2''k'' is a totient for all natural number ''k''. There are infinitely many nontotient numbers: indeed, there are infinitely many distinct primes ''p'' (such as 78557 and 271129, see Sierpinski number) such that all numbers of the form 2''a''''p'' are nontotient, and every odd number has a multiple which is a nontotient. ==References== * * L. Havelock, (A Few Observations on Totient and Cototient Valence ) from PlanetMath * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「nontotient」の詳細全文を読む スポンサード リンク
|