|
Photoprotection is a group of mechanisms that help living organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress. ==Photoprotection in Plants== In organisms that perform oxygenic photosynthesis, excess light may lead to photoinhibition, or photoinactivation of the reaction centers, a process that does not necessarily involve chemical damage. When photosynthetic antenna pigments such as chlorophyll are excited by light absorption, unproductive reactions may occur by charge transfer to molecules with unpaired electrons. Because oxygenic phototrophs generate O2 as a byproduct from the photocatalyzed splitting of water (H2O), photosynthetic organisms have a particular risk of forming reactive oxygen species. Therefore, a diverse suite of mechanisms have developed in photosynthetic organisms to mitigate these potential threats, which become exacerbated under high irradiance, fluctuating light conditions, in adverse environmental conditions such as cold or drought, and while experiencing nutrient deficiencies which cause an imbalance between energetic sinks and sources. In eukaryotic phototrophs, these mechanisms include non-photochemical quenching mechanisms such as the xanthophyll cycle, biochemical pathways which serve as "relief valves", structural rearragements of the complexes in the photosynthetic apparatus, and use of antioxidant molecules. Higher plants sometimes employ strategies such as reorientation of leaf axes to minimize incident light striking the surface. Mechanisms may also act on a longer time-scale, such as up-regulation of stress response proteins or down-regulation of pigment biosynthesis, although these processes are better characterized as "photoacclimatization" processes. Cyanobacteria possess some unique strategies for photoprotection which have not been identified in plants nor in algae. For example, most cyanobacteria possess an Orange Carotenoid Protein (OCP), which serves as a novel form of non-photochemical quenching. Another unique, albeit poorly-understood, cyanobacterial strategy involves the IsiA chlorophyll-binding protein, which can aggregate with carotenoids and form rings around the PSI reaction center complexes to aid in photoprotective energy dissipation. Some other cyanobacterial strategies may involve state-transitions of the phycobilisome antenna complex , photoreduction of water with the Flavodiiron proteins, and futile cycling of CO2 . 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「photoprotection」の詳細全文を読む スポンサード リンク
|